Щелевые фундаменты. Рекомендации по проектированию и строительству щелевых фундаментов

На материалах для фундамента экономить нельзя, но иногда можно сохранить время и деньги на строительстве своими руками, используя нестандартный подход. Например, залить бетон для ленты прямо в землю без опалубки. Технология называется щелевой фундамент. В нормативах ее не найти, но на глинистых почвах с низким уровнем грунтовых вод так строят с древних времен.

Особенности

Фундаменты называются щелевыми, когда их возводят без опалубки, заливая бетон прямо в траншею. Обязательное условие - надежный глинистый грунт, так как землю с высоким содержанием песка невозможно утрамбовать, стенки все равно начнут осыпаться, что затруднит заливку бетона и понизит его прочность.

Когда можно возводить фундамент без опалубки?

  • Глинистый грунт.
  • Грунтовые воды залегают ниже основы.
  • Морозное пучение минимально.

Только из почвы с большим содержанием глины можно возвести надежную форму для заливки. Но этот тип грунта впитывает влагу лучше других, а значит, и наиболее подвержен морозному пучению. Поэтому возводить такое основание дома можно, зная характеристики участка. Земля, которая обвалилась в траншею, или поднявшиеся грунтовые воды сведут на нет всю экономию.

Приблизительно узнать характеристики грунта можно самому. Но только сделав профессиональную экспертизу, вы будете спать спокойно. Бетон не наберет прочность в неподходящих условиях. Иногда на одной сотке встречаются 2‒3 типа грунта, а подземные воды могут содержать агрессивные соединения.

Самый простой способ определить УГВ ‒ бурение скважин или отслеживание уровня воды в колодце. Но не стоит забывать, что кроме грунтовых вод при возведении фундамента своими руками опасны дожди, начинать бетонирование в промокшей траншее нельзя.

Этот тип фундамента имеет неровную поверхность, поэтому морозное пучение действует на него сильнее. Предотвратить это можно, заложив фундамент ниже уровня промерзания, утеплив, или обеспечив хороший дренаж.

Для строительства щелевого основания подойдет сухая теплая погода. Оптимальная температура твердения +15-20°C. Если днем постоянно светит солнце, рекомендуем укрыть бетон тентом, чтобы он не пересыхал. Первые дни поверхность смачивают водой.

Нужно ли гидроизолировать фундамент?

Если вы строите жилой дом, лучше изолировать фундамент от воды, тогда здание не нужно будет ремонтировать еще долго. Специалисты рекомендуют изолировать основание, даже если у вас почва с низким УГВ, так как этот показатель меняется со временем. По стандартам гидроизоляцию не делают, если строят дом небольшой площади, на хорошем грунте и без подвала. Чтобы не пришлось раскапывать щелевой ленточный фундамент для вторичной гидроизоляции, используйте марку с водонепроницаемостью от W6. Если вы делаете смесь своими силами, обязательно добавлять туда вещества для защиты от влаги.

Пошаговое руководство по закладке основания

  • Подготовка траншеи.

С участка убирают мусор и растения. Копают траншею, засыпают в нее слой песка 10 см и такой же слой гравия. Выкопанную землю удаляют от будущего дома на 0,5 м, так как место, куда зальют бетон, должно быть ровным, без лишнего грунта и мусора. Песчаная подушка обеспечивает минимальный дренаж и выравнивает поверхность основания, особенно это важно, если участок неровный. Затем измеряют траншею и проверяют отклонение по осям.

  • Установка опалубки надземной части.

Чтобы сделать монолитный фундамент, нужно установить опалубку из ламинированной фанеры или обструганных досок для его надземной части. Даже если участок неровный, важно, чтобы фундамент был без перепадов высот. Иногда цоколь строят из готовых бетонных блоков, тогда опалубка не понадобится.

Не рекомендуем использовать кирпич или легкий бетон, они сильно пропускают влагу, и не выдержат нагрузки от тяжелого строения. Чтобы не пришлось убирать разлившийся бетон, лучше поставить доски на 5‒10 см выше поверхности земли. Если такой возможности нет, не ждите, смесь засохнет и придется работать перфоратором, чтобы отодрать ее.

  • Армирование и подготовка к заливке.

По технологии малозаглубленную ленту обязательно армировать, так как на нее будет действовать морозное пучения, что часто приводит к трещинам. Чтобы при заливке бетона влага не утекла, в траншею укладывают толстую полиэтиленовую пленку, но она не будет выполнять функции гидроизоляции. Для защиты основания используют рубероид, а от морозного пучения, на дно и стенки траншеи экструдированный пенополистирол. Эти материалы закрепляют на верхней части опалубки, если она есть, или связывают с арматурой.

  • Заливка бетона.

Чем быстрее забетонировать щелевой монолитный фундамент, тем прочнее он получится. При жаркой погоде стенки траншеи начнут осыпаться, а в дождь их может размыть. Лучше начать заливку сразу или на следующий день после земляных работ. Используйте виброуплотнитель, чтобы распределить бетон равномерно.

  • Твердение.

Смесь набирает марочную прочность 28 дней, если в течение первой недели бетон намокнет, замерзнет или пересохнет, его класс понизится. Только что залитый фундамент часто накрывают пленкой и устанавливают тент, если работы проводят в солнечную погоду.

  • Гидроизоляция и теплоизоляция.

Из-за морозного пучения мелкозаглубленный фундамент может треснуть, поэтому если не проложить теплоизолирующие материалы перед бетонированием придется раскапывать конструкцию. Также нужно защитить стены основания дома от капиллярной влаги, иначе пространство под полом будет наполняться водой каждую весну. Для этого надо нанести на стенки обмазочную или рулонную гидроизоляцию.

Построить основу для дома без опалубки возможно, но если у вас не глинистый грунт или много воды на участке, лучше возвести каркас, даже, пусть даже не из ламинированной фанеры, а из старых дверей или других подручных материалов. Перед началом работ соберите информацию о вашей почве, попробуйте выкопать ямку, чтобы самому проверить насколько грунт подходит для этой технологии.


Рекомендации по проектированию и строительству щелевых фундаментов разработаны ордена Трудового Красного Знамени научно-исследовательским институтом оснований и подземных сооружений имени Н.М.Герсеванова Госстроя СССР.

Рекомендации содержат указания по проектированию, расчету и устройству щелевых фундаментов - столбчатых опор глубокого заложения, сооружаемых способом "стена в грунте".

Рекомендации предназначены для проектирования и строительства гражданских, промышленных и транспортных сооружений.

В разработке Рекомендаций принимали участие: д-р техн. наук М.И.Смородинов, кандидаты техн. наук В.Н.Корольков и Б.С.Федоров и инж. В.Д.Иванов.

В Рекомендациях использованы материалы института Фундаментпроект Минмонтажспецстроя СССР, Уральского политехнического института МинВУЗа РСФСР и Днепропетровского инженерно-строительного института МинВУЗа УССР.

Рекомендации одобрены секцией "Специальных работ" Ученого совета НИИОСП.

ВВЕДЕНИЕ

ВВЕДЕНИЕ

Разработка Рекомендаций вызвана началом широкого применения в отечественном строительстве щелевых фундаментов. Щелевые фундаменты представляют собой столбчатые опоры глубокого заложения, устраиваемые способом "стена в грунте", т.е. сооружаемые в узких траншеях, как правило, под защитой глинистого раствора (глинистой суспензии), удерживающего грунтовые стенки траншей от обрушения.

В литературе встречаются другие названия щелевых фундаментов: бареты, шлицевые фундаменты и др.

Щелевые фундаменты могут воспринимать значительные вертикальные и горизонтальные нагрузки в пределах допустимых деформаций. Поэтому они представляют собой наиболее рациональный вид опор для высотных зданий, заводских дымовых труб, транспортных эстакад и других сооружений, передающих значительные концентрированные нагрузки на основание.

Применение щелевых фундаментов наиболее эффективно в сложных геологических условиях, при высоком уровне грунтовых вод, а также на застроенных территориях.

Рекомендации разработаны на основе результатов лабораторных и натурных исследований с использованием следующих нормативных материалов: Рекомендаций по технологии устройства подземных сооружений методом "стена в грунте", главы СНиП II-17-77* "Свайные фундаменты" и главы СНиП II-15-74** "Основания зданий и сооружений".
________________
* На территории Российской Федерации документ не действует. Действуют СНиП 2.02.03-85 .
** На территории Российской Федерации документ не действует. Действуют СНиП 2.02.01-83 . - Примечания изготовителя базы данных.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.3. Щелевые фундаменты не допускается устраивать в грунтах, в которых для обеспечения устойчивости стенок траншей невозможно применение глинистого раствора (крупнообломочные грунты с незаполненными пустотами, грунты текучей консистенции), а также на закарстованных и подрабатываемых территориях.

1.4. При проектировании щелевых фундаментов, кроме настоящих рекомендаций, следует руководствоваться главой СНиП по проектированию оснований зданий и сооружений и главой СНиП по проектированию бетонных и железобетонных конструкций.

1.5. Щелевые фундаменты под промышленное оборудование с динамическими нагрузками следует проектировать с учетом дополнительных требований, содержащихся в главе СНиП по проектированию фундаментов машин с динамическими нагрузками.

1.6. Щелевые фундаменты, возводимые в среде, обладающей агрессивностью по отношению к бетону, следует проектировать с учетом дополнительных требований, предъявляемых главой СНиП по защите строительных конструкций от коррозии.

2. ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

2.1. Инженерно-геологические изыскания, необходимые для проектирования щелевых фундаментов, должны производиться в соответствии с требованиями главы СНиП по инженерным изысканиям для строительства; при этом в отчетных материалах изысканий должны содержаться дополнительные данные, характеризующие вид и состояние фундаментов и их оснований расположенных вблизи зданий и сооружений, а также данные о нагрузках, передаваемых этими фундаментами на основание.

2.2. Инженерно-геологическое строение площадки должно быть изучено на глубину не менее 10 м ниже подошвы проектируемых щелевых фундаментов. При опирании на скальный грунт эта величина составляет 1,5 м.

2.3. Щелевые фундаменты выполняются в виде вертикальных несущих элементов ограниченной ширины в плане прямоугольного, крестообразного, таврового, коробчатого и др. поперечных сечений (рис.1), используемых отдельно или образующих фундаментные поля (рис.2).

Рис.1. Поперечные сечения щелевых фундаментов

Рис.1. Поперечные сечения щелевых фундаментов: а - прямоугольное; б - прямоугольное сдвоенное; д - корытообразное; е - двутавровое; ж - коробчатое; з - уголковое

Рис.2. Примеры устройства фундаментных полей с размещением щелевых фундаментов

Рис.2. Примеры устройства фундаментных полей с размещением щелевых фундаментов: а - линейное; б, г - радиальное; в - концентрическое

2.4. Конструкция щелевых фундаментов, их размеры и взаимное расположение выбираются в зависимости от размеров надфундаментного сооружения, его очертания в плане, характера и величины расчетных нагрузок, геологических и гидрогеологических условий и других факторов.

2.5. Размеры щелевых фундаментов в плане должны позволять вести их бетонирование по всему поперечному сечению.

2.6. В отдельных случаях щелевые фундаменты могут сооружаться в траншеях, отрываемых насухо без применения глинистого раствора. Это возможно в необводненных связных грунтах.

2.7. Толщина щелевых фундаментов соответствует ширине применяемых грейферов и обычно находится в пределах от 0,4 до 1 м. Длина щелевых фундаментов обычно равна величине максимального раскрытия челюстей грейфера или ее удвоенному значению плюс 40-80 см (перемычка между двумя захватками) и колеблется в пределах от 2 до 7 м.

2.8. Щелевые фундаменты обычно выполняются глубиной от 5 до 20-25 м. В отдельных случаях заложение щелевых фундаментов может достигать большей глубины (30-50 м).

2.9. Рациональность применения щелевых фундаментов определяется на основании технико-экономического сопоставления с другими вариантами. Целесообразно применять щелевые фундаменты в сложных геологических и гидрогеологических условиях, а также при строительстве вблизи существующих зданий и сооружений.

2.10. При проектировании следует стремиться к использованию на одной площадке минимального числа (1-3) типоразмеров поперечного сечения щелевых фундаментов.

2.11. При проектировании щелевых фундаментов должны быть определены и указаны в проекте основные данные по технологии производства работ (плотности глинистого раствора и бетона, тип и параметры землеройного механизма, продолжительность выполнения отдельных операций и др.).

2.12. Щелевые фундаменты следует проектировать монолитными с бетонированием, осуществляемым методом вертикально-перемещающейся трубы (ВПТ) или нагнетанием бетонной смеси насосом с вытеснением глинистого раствора. При технико-экономическом обосновании щелевые фундаменты можно устраивать сборными из цельных железобетонных элементов заводского изготовления или с горизонтальным членением. При устройстве щелевых фундаментов из сборных элементов пространство, остающееся между ними и грунтом, заполняют твердеющим тампонажным раствором. Щелевые фундаменты можно также устраивать сборно-монолитными (сборными в верхней части и монолитными в нижней).

2.13. Глинистый раствор должен обладать свойствами, обеспечивающими устойчивость грунтовых стенок траншеи в процессе ее разработки и бетонирования. Показатели качества глинистого раствора должны содержаться в проекте производства работ.

3. ОСНОВНЫЕ УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ

3.1. Щелевые фундаменты следует проектировать из тяжелого бетона марок не ниже М 200 для монолитных и М 300 - для сборных конструкций. Проектную марку бетона по морозостойкости и водонепроницаемости следует назначать в зависимости от температурно-климатических условий района строительства в соответствии с требованиями главы СНиП по проектированию бетонных и железобетонных конструкций.

3.2. Требования к бетону и арматуре устанавливаются в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций.

3.3. Щелевые фундаменты должны армироваться за исключением случаев, когда по всему поперечному сечению фундамента при неблагоприятных сочетаниях нагрузок возникают только напряжения сжатия, значение которых не превышает соответствующих расчетных сопротивлений бетона. Арматуру надлежит сваривать в каркасы. Расстояние между арматурными стержнями в каркасах должно быть не менее 150 мм и не более 20 диаметров продольной арматуры (но не более 300 мм). Каркасы должны иметь жесткость, обеспечивающую сохранение требуемых размеров при их транспортировке и монтаже.

3.4. В щелевых фундаментах из монолитного бетона в качестве рабочей арматуры должна применяться стержневая арматура периодического профиля. Применение гладкой арматуры для этой цели не допускается.

3.5. Арматурные каркасы для щелевых фундаментов из монолитного бетона должны иметь длину, равную глубине траншеи, ширину и толщину на 10-15 см менее соответствующих размеров фундамента.

3.6. В арматурных каркасах должны быть предусмотрены проемы для пропуска бетонолитных труб. Проемы следует устраивать: один в середине каркаса при ширине щелевого фундамента до 4 м и два (при радиусе растекания бетонной смеси не менее 1,5 м) при ширине щелевого фундамента 46 м.

3.7. Арматурные каркасы должны иметь с наружный стороны направляющие салазки, фиксирующие их положение в траншее для создания требуемой толщины защитного бетонного слоя, а также петли для подъема краном и арматурные выпуски для подвешивания каркасов на воротнике после опускания в траншею.

3.8. Направляющие салазки изготовляют из полосовой стали и приваривают к арматурному каркасу с шагом 2 м по длине и ширине каркаса. Толщина каркаса по направлявшим салазкам должна быть на 10-15 мм меньше ширины грейфера, принятого для разработки траншеи.

3.9. Толщину щелевого фундамента назначают по расчету его прочности и несущей способности, но не менее 400 мм при глубине заложения до 6 м, 500 мм при глубине заложения 615 м и 600 мм при глубине заложения более 15 м.

3.10. Заглубление щелевого фундамента в слой грунта, на который опирается его подошва, должно быть не менее 0,5 м. Толщина этого слоя под подошвой щелевого фундамента должна быть не меньше пятикратной толщины последнего, а глубина заложения слоя не меньше глубины сжимаемой толщи (рис.3).

При сборно-монолитной конструкции щелевого фундамента сборная верхняя часть фундамента должна заглубляться в монолитную не менее чем на 50 см.

Рис.3. Расположение щелевого фундамента относительно слоев грунта

Рис.3. Расположение щелевого фундамента относительно слоев грунта: - толщина фундамента; - заглубление в несущий слой; - толщина слоя, на который опирается фундамент; - глубина заложения подошвы несущего слоя; - размер сжимаемой толщи

4. ОСНОВНЫЕ УКАЗАНИЯ ПО РАСЧЕТУ

4.1. При расчете щелевых фундаментов должны учитываться действующие на них нагрузки и воздействия, возникающие в условиях эксплуатации; для сборных элементов - также нагрузки, возникающие при их изготовлении, транспортировке и монтаже.

4.2. Нормативные нагрузки, коэффициенты перегрузки и сочетания нагрузок следует принимать в соответствии с требованиями главы СНиП "Нагрузки и воздействия". В необходимых случаях нагрузки и воздействия следует определять также по главам СНиП: "Проектирование мостов и труб", "Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)", "Линии электропередачи напряжением выше 1 кВ".

4.3. Щелевые фундаменты и их основания следует рассчитывать по первому и второму предельным состояниям (по несущей способности и по деформациям). Щелевые фундаменты рассчитывают по прочности, перемещениям и образованию или раскрытию трещин, а их основания - по несущей способности, устойчивости и осадкам.

4.4. Основания рассчитывают по устойчивости только в случаях, если на них передаются горизонтальные нагрузки и они ограничены откосами или сложены крутопадающими слоями грунта. Расчет оснований по устойчивости можно производить методами круглоцилиндрических поверхностей скольжения в соответствии с требованиями главы СНиП по проектированию оснований зданий и сооружений. При этом коэффициент устойчивости , определяемый по формуле

Где и - соответственно суммы моментов всех удерживающих и сдвигающих сил относительно предполагаемого центра вращения, должен быть не менее 1,2.

4.5. Расчет щелевых фундаментов по перемещениям и оснований по осадкам от действия вертикальных нагрузок не производится при опирании щелевых фундаментов на практически несжимаемое основание (скальные, крупнообломочные с песчаным заполнителем и глинистые грунты твердой консистенции).

4.6. Расчет щелевых фундаментов по образованию или раскрытию трещин производится при действии на эти фундаменты горизонтальных нагрузок в соответствии с требованиями главы СНиП по проектированию бетонных и железобетонных конструкций.

4.7. Расчет щелевых фундаментов и их оснований по несущей способности должен производиться на основное сочетание нагрузок с коэффициентами перегрузки, принимаемыми в соответствии с требованиями глав СНиП на нагрузки и воздействия, расчет до деформациям - на основное сочетание нагрузок с коэффициентами перегрузки, равными единице.

5. РАСЧЕТ ЩЕЛЕВЫХ ФУНДАМЕНТОВ ПО НЕСУЩЕЙ СПОСОБНОСТИ

5.1. Щелевые фундаменты, рассчитываемые по несущей способности, должны удовлетворять условию:

Где - расчетная нагрузка, передаваемая на щелевой фундамент и определяемая при проектировании здания или сооружения;

- расчетная нагрузка, допускаемая на щелевой фундамент, определяемая в соответствии с указаниями п.5.2.

5.2. Расчетную нагрузку , допускаемую на щелевой фундамент, следует определять как наименьшее из двух найденных значений расчетных сопротивлений щелевого фундамента: по материалу и по грунту , взятыми с соответствующими коэффициентами безопасности:

где - коэффициент безопасности по материалу, принимаемый равным 1;

- коэффициент безопасности по грунту, принимаемый равным 1,4, если несущая способность щелевого фундамента определена по расчету, и =1,25, если несущая способность щелевого фундамента определена по результатам статических испытаний.

5.3. Расчетное сопротивление по материалу , кН, щелевых фундаментов, работающих на осевую сжимающую нагрузку, следует определять по формуле:

Где - коэффициент условий работы щелевого фундамента, принимаемый равным 0,8;

- коэффициент однородности бетона, учитывающий способ производства работ, принимаемый равным 0,7 при бетонировании щелевого фундамента под глинистым раствором и 1 при бетонировании щелевого фундамента насухо;

- расчетное сопротивление бетона щелевого фундамента сжатию, кПа, принимаемое в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций;

- площадь поперечного сечения щелевого фундамента, м;

- расчетное сопротивление арматуры щелевого фундамента сжатию, кПа, принимаемое в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций;

- площадь поперечного сечения арматуры щелевого фундамента, м.

5.4. Расчетное сопротивление по грунту , кН, щелевых фундаментов, работающих на осевую сжимающую нагрузку и опирающихся на сжимаемое основание, следует определять по формуле:

Где - коэффициент условий работы щелевого фундамента, принимаемый равным 1;

- коэффициент условий работы грунта под подошвой щелевого фундамента, принимаемый равным 0,4 при бетонировании щелевого фундамента под глинистым раствором, если со дна траншеи шлам не удаляется, и 0,9, если со дна траншеи шлам удаляется; =1 при бетонировании щелевого фундамента насухо;

- расчетное сопротивление грунта под подошвой щелевого фундамента, кПа, принимаемое по табл.1;

- площадь подошвы щелевого фундамента, м;

- периметр поперечного сечения щелевого фундамента, м;

- коэффициент, зависящий от формы щелевого фундамента, равный , учитываемый на высоте фундамента от низа воротника до глубины , где , и - соответственно глубина, толщина и длина фундамента;

- коэффициент условий работы грунта на боковой поверхности щелевого фундамента, принимаемый по табл.2 при бетонировании щелевого фундамента под глинистым раствором; при бетонировании щелевого фундамента насухо =0,7 для всех грунтов, кроме глин, для которых =0,6;

- расчетное сопротивление -го слоя грунта по боковой поверхности щелевого фундамента, кПа, принимаемое по табл.3, но не более 40 кПа;

- толщина -го слоя грунта, соприкасающегося с боковой поверхностью щелевого фундамента, м.

Примечания: 1. При залегании под подошвой щелевых фундаментов скальных, крупнообломочных с песчаным заполнителем и глинистых грунтов твердой консистенции, представляющих практически несжимаемое основание, расчетное сопротивление щелевых фундаментов по грунту определяется согласно требованиям п.5.6;

2. Расчетное сопротивление щелевого фундамента по грунту, определяемое по формуле (5), подлежит обязательной проверке статическими испытаниями опытных щелевых фундаментов, проводимыми в тех же грунтовых условиях;

3. Статические испытания щелевых фундаментов допускается не проводить в следующих случаях:

для зданий и сооружений III и IV классов при основаниях, сложенных горизонтальными, выдержанными по толщине слоями грунта (уклон не более 0,1), сжимаемость которых ниже подошвы щелевого фундамента в пределах, равных его пятикратной толщины, не увеличивается;

для зданий и сооружений, у которых полученное по формуле (5) расчетное сопротивление щелевого фундамента по грунту по конструктивным соображениям имеет не менее чем трехкратный запас;

если имеются результаты статических испытаний щелевых фундаментов, проведенных в подобных грунтовых условиях.

Таблица 1. Расчетное сопротивление грунта под подошвой щелевого фундамента , кПа

Глубина заложения фундамента, м

граве-
листые

средней крупности

пылева-
тые


Таблица 2. Коэффициент условий работы грунта по боковой поверхности щелевого фундамента

Вид грунта

Вид глинистого раствора

Промежуток времени от момента окончания разработки траншеи до начала бетонирования, ч

Пески, супеси

Бентонитовый ( 1,1)

Небентонитовый (=1,131,25)

Суглинки, глины

Любой (1,25)

Примечание. В таблице приведена плотность свежеприготовленного глинистого раствора.

Таблица 3. Расчетное сопротивление по боковой поверхности щелевого фундамента , кПа

Средняя глубина расположения слоя грунта, м

Песчаные грунты средней плотности

крупные и средней крупности

пыле-
ватые

Глинистые грунты при показателе консистенции , равном

Примечания: 1. Среднюю глубину расположения слоя грунта следует принимать с учетом возможного размыва грунта. Среднюю глубину расположения слоя грунта при планировке территории срезкой, подсыпкой или намывом до 3 м следует принимать от уровня природного рельефа, а при срезке, подсыпке или намыве от 3 до 10 м - от условной отметки, расположенной соответственно на 3 м выше уровня срезки или на 3 м ниже уровня подсыпки;

2. При определении расчетного сопротивления грунта по боковой поверхности щелевого фундамента пласты грунта следует расчленять на однородные слои толщиной не более 2 м;

3. Для промежуточных глубин расположение слоев грунта и промежуточных значений консистенции глинистых грунтов значения расчетных сопротивлений по боковой поверхности щелевого фундамента определяют интерполяцией;

4. Величину расчетного сопротивления плотных песчаных грунтов по боковой поверхности щелевого фундамента следует увеличивать на 30% против значений, приведенных в таблице.

5.5. При действии на щелевые фундаменты горизонтальной нагрузки, если отношение высоты щелевого фундамента к его поперечному размеру по направлению действия нагрузки более 10, расчет фундаментов должен производиться как гибкого стержня в линейно-деформируемой среде; если это отношение меньше 10, то расчет может основываться на схеме жесткого стержня.

5.6. Расчетное сопротивление по грунту , кН, щелевых фундаментов, работающих на осевую сжимающую нагрузку и опирающихся на практически несжимаемое основание (скальные, крупнообломочные с песчаным заполнителем и глинистые грунты твердой консистенции), следует определять по формуле:

где , , - обозначения те же, что и в формуле (5).

Расчетное сопротивление грунта под подошвой щелевого фундамента , кПа, определяется по формуле:

Где - нормативное временное сопротивление грунта под подошвой щелевого фундамента одноосному сжатию в водонасыщенном состоянии, кПа;

- коэффициент безопасности по грунту, принимаемый равным 1,4.

Примечание. При наличии под подошвой щелевого фундамента сильновыветрелых, выветрелых и размягчаемых скальных грунтов величина нормативного сопротивления грунта должна назначаться по результатам статических испытаний грунта штампом или по результатам испытаний щелевых фундаментов статической нагрузкой.

6. РАСЧЕТ ЩЕЛЕВЫХ ФУНДАМЕНТОВ ПО ДЕФОРМАЦИЯМ

6.1. Щелевые фундаменты и их основания, рассчитываемые по деформациям, должны удовлетворять условию:

Где - расчетная величина деформации (перемещения или осадки), определяемая в соответствии с указаниями пп.4.7 и 5.5;

- предельно допустимая величина деформации (перемещения или осадки), устанавливаемая в задании на проектирование, а при отсутствии ее в задании - принимаемая по предельно допустимым деформациям в соответствии с главой СНиП по проектированию оснований зданий и сооружений из условий их нормальной эксплуатации.

6.2. При расчете по деформациям следует различать два случая: I случай - 0,2, II случай - 0,2,

где - расчетная сила сопротивления грунта по боковой поверхности щелевого фундамента и - расчетная сила сопротивления грунта под подошвой щелевого фундамента, кH, определяемые в соответствии с п.5.4.В этом случае вы можете повторить покупку документа с помощью кнопки справа.

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

Ленточный фундамент – это распространенный тип основы под постройку. Существующие его варианты различаются глубиной заложения, применяемыми стройматериалами, особенностями возведения. Так на устойчивых грунтах с большой глубиной залегания подземных вод возможно строительство фундамента щелевого, являющегося разновидностью ленточного. При этом бетоном заливают арматурный каркас, установленный в траншее без опалубки. Щиты устанавливают только для создания цокольной части. Опора подобного типа подходит лишь под нетяжелые строения.

Особенности конструкции щелевого основания

Постройка дома и практически любой постройки начинается с возведения основания. Под небольшие строения, имеющие относительно небольшой вес, довольно часто возводят щелевой, плитный, столбчатый или свайный типы фундаментов.

Под щелевым основанием понимают сплошной ленточный монолитный (железобетонный) фундамент. Его разрез имеет вид прямоугольника. Особенность такой основы заключается в том, что рабочий раствор заливают непосредственно в выкопанную траншею. При этом опалубку в углубление не устанавливают, а монтируют только в верхней (цокольной) части фундамента. При этом стены траншеи являются щитами под нижнюю часть опорной конструкции. Из-за наличия неровностей на них обеспечивается лучшее сцепление массы грунта с бетоном при заливке.

На практике встречаются также многощелевые фундаментные конструкции, состоящие из нескольких тонких стен толщиной от 10 до 20 см, расположенных параллельно друг к другу. Они возводятся путем заливки прорезанных в грунте траншей с арматурой бетонной смесью.

Популярно щелевое основание при строительстве следующих сооружений:

  • гаражей;
  • бань;
  • строений, хозяйственного назначения;
  • малоэтажных, нетяжелых домов.

При выборе данного основания следует учитывать следующие требования:

  • подземные воды на участке под застройку должны залегать глубоко;
  • необходимо, чтобы грунт был плотным, не пучинистым.

Если грунт непучинистый, то обходятся мелкозаглубленным вариантом.

Тип почвы и гидрогеологические условия местности определяют, проводя исследования самостоятельно либо привлекая для этого специалистов. Второй вариант является надежнее при отсутствии навыков выполнения подобных работ.

По своей сути основа щелевого типа является приспособлением фундамента ленточной конструкции под потребности и возможности индивидуального застройщика. На песчаных или рыхлых почвах использовать его нельзя, потому что стенки траншей будут осыпаться.

Плюсы и минусы щелевого фундамента, взаимодействие с грунтом

Достоинства и недостатки у щелевого фундамента практически такие же, как и у ленточного. Это связано с идентичностью конструкций.

Наиболее характерные плюсы и минусы щелевых опорных конструкций представлены в таблице ниже.

Достоинства Недостатки
1 уменьшение объема работ по выкапыванию траншей и монтажу щитов можно возводить только на глинистых, плотных грунтах
2 улучшенное сцепление бетона с грунтовой массой нельзя использовать на участке пучинистым грунтом, из-за сцепления стенок основы с ним
3 простая технология строительства ограничен вес возводимых построек
4 возведение конструкции не оказывает разрушительного влияния на близлежащие строения и инженерные коммуникации прочность бетона может снизиться, если заливку выполнять в сухую почву

Время проведения земляных работ снижается практически вдвое. Ускорить рытье траншей позволяет привлечение техники.

Из-за лучшего сцепления монолитной железобетонной ленты с грунтом при его пучении возможны следующие последствия:

  • при равенстве нагрузки от строения (либо большей ее величине) силе морозного выталкивания, деформации сооружения не происходит;
  • если силы пучения больше, то основа выталкивается из грунта и разрушается вместе с возведенной постройкой.

При строительстве жесткого щелевого фундамента на почвах подверженных сильному пучению сооружение может и не растрескаться, только со временем появится его крен в какую-то сторону.

При возведении основы снижается объем земляных работ и по установке опалубки, сокращается время строительства. Итогом является уменьшение себестоимости проведения строительства. Простота технологии позволяет возводить основу щелевого типа своими руками без посторонней помощи.

Технология строительства

Технология строительства опорной конструкции щелевого типа практически идентична возведению ленточного фундамента. Нюансы заключаются в монтаже щитов.

Основание щелевого типа возводится в следующей последовательности:

  • подготавливают застраиваемый участок: выравнивают его поверхность (при этом снимают плодородный слой), производят вырубку кустов и деревьев, уборку камней и мусора;
  • согласно плану делают разметку территории, отмечая фундаментный периметр колышками, с натянутой между ними веревкой;
  • выкапывают траншеи, складывая грунт с выемок подальше, чтобы он не осыпался обратно и не мешал работать;
  • дно выемки утрамбовывают;
  • в канаву засыпают песчано-щебневую подушку с толщиной слоя приблизительно 0,1-0,15 м;
  • трамбуют засыпку, поливая ее периодически водой;
  • укладывают гидроизоляционный материал (плотный полиэтилен либо рубероид), чтобы бетон не отдавал воду в почву;
  • только под цокольную часть монтируют опалубочную конструкцию;
  • проводят работы по армированию ленты: внутрь траншеи устанавливают каркас из металлических или пластиковых прутьев сечением около 10 см;
  • послойно (высотой 02,2-0,3 м) заливают бетон, утрамбовывая при этом каждый ряд;
  • после набора требуемой прочности бетоном опалубку демонтируют, продолжая строительство.

Ширина выкапываемых траншей должна равняться аналогичному параметру фундаментной основы, а глубина высчитывается, исходя из гидрогеологических особенностей участка, величины предполагаемой нагрузки, отметки промерзания почвы. Подошва может быть шире ленты. Это улучшит ее несущие показатели.

Поливание песчаной подушки обеспечивает лучшую ее трамбовку, чем на «сухую». Но при заглубленном варианте основы такая прослойка не нужна.

Опалубку часто изготавливают из ламинированных листов фанеры или ровных досок. Это позволяет получить гладкую поверхность монолита, что уменьшит объем отделочных работ. Современный рынок также предлагает относительно дешевые пластиковые щиты.

Если планируется цоколь сделать из готовых железобетонных блоков, шлакоблоков или других подобных материалов, то опалубку не устанавливают.

Дно и стенки фундаментной конструкции при необходимости можно утеплить, например, пенополистиролом, а также изолировать от влаги с помощью рулонных гидроизоляционных материалов.

Арматурный каркас часто делают двухслойным. Его рекомендуется располагать так, чтобы вокруг него со всех сторон была бетонная прослойка толщиной минимум 5 см. Пруты из металла соединяют с помощью сварки или вязальной проволоки. Пластиковые стержни соединяют часто специальными хомутами.

Заливку следует сделать за день, чтобы не было отдельных монолитных рядов, хуже связанных между собой и ослабляющих возводимую конструкцию. Для равномерного застывания бетон накрывают полиэтиленом, а в первые дни его смачивают водой. Достижение прочности монолитом происходит примерно за месяц. Это время определяется климатическими условиями региона.

Строительство щелевого фундамента для дома или другой постройки проводится аналогично возведению ленточного. При этом нижняя его часть, заливаемая прямо в траншею, лучше контактирует с грунтом. Важным моментом является правильное определение гидрогеологических условий на участке, чтобы данное основание было надежным. Ошибки, допущенные в этом отношении, могут иметь негативные последствия, вплоть до разрушения возведенного сооружения. Также нужно точно соблюдать технологию строительных работ, чтобы получить качественный результат.

По сути, щелевой фундамент — это вариант ленточного фундамента, который выполняется по технологии монолитного возведения стен. Щелевым он называется потому, что бетон заливается прямо в траншею, в распор — щель в земле.

Щелевые фундаменты применяются для строительства легких домов, для хозяйственных построек. Его заливают прямо в выкопанную в грунте траншею. Грунт в здесь выполняет роль опалубки нижней части фундамента, а опалубка цокольной части может быть изготовлена из обрезной доски или других материалов.

Щелевые фундаменты бывают заглубленными или мелкозаглубленными. Устойчивость заглубленных щелевых фундаментов рассчитывается превышением нагрузки дома над максимальными общими силами пучения. Деформации пучения должны равняться нулю. Мелкозаглубленные фундаменты предполагают равные нулю деформации пучения при промерзании грунта. Мелкозаглубленный фундамент нежелательно возводить на пучинистом грунте. Если у вас в планах строительство дома небольших размеров на заглубленном фундаменте тогда проследите за точностью расчета показателя устойчивости.

«Подбетонка» для фундамента

Перед тем, перед тем как заливать бетон рекомендуется заливать «подбетонку». В виде ровной и утрамбованной подушки из песка, сверху которой заливают не толстый слой бетона и дают ему затвердеть. «Подбетонка» для фундамента необходима для того, чтобы, после заливки тела самого фундамента, влага из него не уходила в грунт через песчаную подушку.

Консистенция для подбетонки для фундамента — густая сметана. Раствор должен течь свободно. надо дать ему схватиться и только затем можно приступать к основной заливке. В таком варианте вероятность появления трещин минимальна, т.к. они могут появиться в бетоне только при быстром и неравномерном высыхании. Еще, чтобы не было трещин, можно добавить микрофибру (стержни из металла длиной 2-5 см). Приобрести их можно в компаниях, которые занимаются бетонными работами.

Щелевой фундамент: условия надежного применения

1. До самого завершения заливки бетона траншейные вертикальные стены должны сохранять целостность.

2. Если после дождя на дне траншеи образовались лужи, воду необходимо вычерпать. Грунт на месте скопления воды следует срезать, если он превратился в текуче-пластичный или текучий.

3. Обустраивая щелевые фундаменты уровень грунтовых вод должен находиться ниже дна траншеи. Важно, чтобы щелевой был заложен ниже уровня промерзания грунта. Особенности гидроизоляции зависят от уровня грунтовых вод на месте строительства и их агрессивности. Если уровень грунтовых вод ниже уровня фундамента на 1-1,5 м, то достаточно гидроизоляции цоколя.

Щелевой фундамент является одним из наглядных примеров адаптации традиционного ленточного основания к глинистым грунтам. Отсутствие опалубки по всей высоте заливки и сокращение земельных работ существенно удешевляет стоимость строительства объекта. Щелевые фундаменты популярны для жилых домов малой этажности, гаражей, построек хозяйственного назначения и других строений.

Конструктивно щелевые фундаменты сопоставимы с монолитными ленточными основаниями, только вместо опалубки используется траншея. Внешне траншея чем-то схожа с щелью в земле, отсюда и название «щелевой» фундамент. Неровные борта земляной траншеи обеспечивают прочное сцепление грунта и залитой бетонной смеси.

Формирование нижней части щелевой опоры происходит посредством грунта, выполняющего роль опалубки под подошву фундамента. Таким образом, нагрузки на грунт со стороны строения передаются всеми поверхностями фундамента – опорной плоскостью и боковыми стенками, то есть фундамент передает полный спектр нагрузок вертикального и горизонтального направлений.

Закладку щелевых оснований производят в глинистых почвах. Заливкой бетонной смеси в распор траншеи создается жесткая пространственная конструкция, обеспечивающая устойчивость строения к весовым нагрузкам и выталкивающим усилиям морозного пучения. Изготовление щелевых фундаментов для домов, возводимых на песчаных почвах, не рекомендуется. Песок не удерживает геометрическую форму стенок, в результате осыпающийся грунт резко ухудшает качество заливаемой бетонной смеси и не способствует созданию работоспособного фундаментного монолита.

К достоинствам щелевых фундаментов относят:

  • Существенное снижение трудоемкости строительных работ. Статистика утверждает, что переход на закладку щелевого фундамента сокращает объемы проводимых земляных работ практически в два раза, объемы работ с опалубкой – до 60-70%;
  • Снижение затратной части по бетону — до 6% и по арматуре – до 20%;
  • Возможность использования траншейных технологий в стесненных условиях при запрете проведения динамических воздействий на грунт, например, вблизи коммуникаций или около построенных зданий.

Главным недостатком оснований щелевого типа является ограничение его применимости:

  • Допускается заливать только в глинистых грунтах, чтобы обеспечивалось сохранение формы траншеи при заливке бетонной смеси и ее уплотнении;
  • Использовать только на непучинистых грунтах, поскольку морозные пучения высокой интенсивности способны выпучить и перекосить возведенный дом, за счет бокового сцепления фундамента с грунтом;
  • На щелевых опорах не возводятся массивные постройки.

Взаимодействие щелевых оснований с почвой

При охлаждении воздуха в холодный период зимнего сезона начинается процесс промерзания почвы. В пучинистых грунтах характерен следующий процесс: по мере углубления фронта промерзания от поверхности земли в грунтовую толщу возникают касательные силы пучения, приложенные к боковым поверхностям фундаментов. При понижении температуры грунта величины удельных касательных и, соответственно, суммарных сил пучения Qf возрастают практически до 30 тс/м. Смерзание грунта в единое целое поддерживает лед, однако при весеннем потеплении лед теряет свои связующие свойства. При понижении температуры замерзшего грунта значения суммарных сил Qf достигают своего максимума и потом начинают снижаться. В процессе изменения касательных нагрузок пучения возможны два варианта событий:

  1. При превышении нагрузок воздействия со стороны построенного дома над значениями показателей Qf будет соблюдаться устойчивость опоры, деформация пучения – нулевая;
  2. При превышении значений Qf над нагрузками со стороны постройки фундамент теряет устойчивость и начинает перемещаться вверх вместе с замерзшим грунтом. При этом происходит отрыв подошвы фундамента от грунтового основания с образованием под ней объемной мини-полости. В процессе весеннего оседания постройки, связанного со снижением сил пучения, в образовавшуюся полость попадает грунт со стенок траншеи. Опора фундамента уже НЕ МОЖЕТ вернуться в исходное положение. Начинается крен всего строения, с годами все нарастающий.

Методики расчета

В зависимости от глубины заложения щелевые фундаменты подразделяются на два типа:

  • Глубоко заглубленные — заложенные ниже глубины промерзания почвы;
  • Мелкозаглубленные — применяемые на непучинистых почвах.

Применительно к опорам ленточного щелевого типа необходимо использовать указания свода правил «Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*», регламентирующие расчеты фундаментов по двум группам предельных состояний (п.5.1.2):

  • Расчеты по несущей способности, относимые СП к первой группе предельных состояний, куда вошли разрушения конструкции, потеря устойчивости положения и т.п.;
  • Расчеты по деформациям, отнесенные СП ко второй группе предельных состояний, в число которых вошли недопустимые перемещения и т.п.

Щелевые конструкции оснований дома, залитые ниже глубины промерзания необходимо рассчитывать на устойчивость от касательных сил пучения и по деформациям осадок. Мелкозаглубленные щелевые основания, залитые в пучинистых почвах, дополнительно рассчитывают по деформациям пучения. Справочные значения удельных касательных сил пучения приведены в табл. 6.10 «Проектирование и устройство оснований и фундаментов зданий и сооружений». По ним определяется расчетная нагрузка на фундамент для принятия решения о применимости щелевого ленточного основания.

Этапы строительства

При изготовлении щелевых оснований выполняются следующие этапы работ:

  1. Земляные работы по рытью траншеи в соответствии с проектом;
  2. Установка опалубки надземной части на необходимый уровень – будущий цоколь дома;
  3. Армирование в соответствии с проектом;
  4. Заливка бетонной смеси;

Земляные работы

Копаем траншею.

Прокладка траншеи начинается со снятия верхнего плодородного слоя и использования его (при необходимости) для выравнивания площадки.

Траншея выкапывается такой же ширины, как ширина фундамента. Глубина траншеи определена в проекте. Боковые грани траншеи должны быть ровными и не обрушаться во время всех подготовительных работ. Если прошел дождь, то образовавшиеся лужи обязательно осушаются. А «поплывший» грунт срезается до сухого слоя.

Допускается расширение нижней части траншеи для опорной подошвы ленточного монолита. Устройство песчаной подушки не является обязательным для монолитных фундаментов глубокого заложения, а иногда может навредить. Если подушка из песка укладывается, необходимо виброуплотнение.

Обустройство опалубки надземной части

Выставляем опалубку и укрепляем боковыми подпорами.

Для подготовки цоколя дома выставляют опалубку по высоте цокольной части от уровня поверхности грунта. Допускается изготовление цоколя как самостоятельной конструкции из кирпичной кладки или блочного типа.

Армирование

Укладываем арматурный каркас в траншею.

Армирование производится вязкой арматуры. Особое внимание уделяется углам. Более подробно смотрите в материалах: , как подобрать .

Укрепляем опалубку дополнительными поперечными перемычками сверху.

Заливка бетонной смеси

Заливаем бетон.

При подготовке бетонной смеси принято ее готовить, как минимум, на 10% больше расчетной потребности, полное заполнение раствором всех неровностей в грунте.

В подготовленную траншею заливают приготовленную бетонную смесь. Оптимальным вариантом считается заливка непосредственно после подготовки траншеи, пока подсыхающие глинистые края не начали осыпаться. Для укрепления бетонной основы проводится процесс уплотнения, в результате щебень/гравий ложатся максимально плотно с удалением излишков воды и воздуха. Вариантами уплотнения являются штыкование либо виброуплотнение.

Снимаем опалубку и убираем плодородный слой почвы внутри фундамента.

Заключение

Практика строительства легких зданий подтвердила экономичность использования щелевых ленточных оснований. Однако специфика применения этого типа оснований в зависимости от категории грунта требует высокой квалификации проектировщиков в части выполнения расчетов на устойчивость и деформации фундаментов домов. Нередко строители не проводят изыскания для определения свойств грунта на новостройке, а конструкцию фундамента принимают, перестраховываясь, как для сильнопучинистых грунтов, что приводит к удорожанию строительства. Грамотно обоснованное решение щелевого фундамента уменьшит трудоемкость строительства и сократит сроки возведения дома.

Совет! Если вам нужны подрядчики, есть очень удобный сервис по их подбору. Просто отправьте в форме ниже подробное описание работ которые нужно выполнить и к вам на почту придут предложения с ценами от строительных бригад и фирм. Вы сможете посмотреть отзывы о каждой из них и фотографии с примерами работ. Это БЕСПЛАТНО и ни к чему не обязывает.