Характеристика пород – коллекторов, их литологические типы. Учебное пособие: Состав коллекторов пласта месторождения

КОЛЛЕКТОР нефти и газа, горная порода, способная вмещать жидкие, газообразные углеводороды и отдавать их в процессе разработки. Коллекторы подразделяются на промышленные, из которых возможно получение достаточных по величине притоков флюидов, и непромышленные, из которых получение таких притоков на данном этапе невозможно. Нижние пределы параметров коллекторских свойств (проницаемости и полезной ёмкости), определяющие промышленную оценку коллектора, зависят от состава флюида (для газа в связи с его подвижностью они значительно ниже, чем для нефти) и типа коллектора (поровый, биопустатный, кавернозный, трещинный или смешанный).

Формирование коллектора начинается со стадии седиментогенеза породы. Степень сохранности седиментационных признаков зависит, прежде всего, от минерального состава породообразующей части (матрицы) коллектора, минерального состава и формы распределения в поровом пространстве цемента, а также от мощности коллектора. Постседиментационная эволюция коллектора определяется новыми признаками, формирующимися под влиянием увеличивающихся давления и температуры, повышения концентрации флюидов, перераспределения цементирующего материала, изменения структуры пустотного пространства, растворения неустойчивых и образования стабильных минералов. Изменения протекают с разной интенсивностью, определяемой в первую очередь литологическим типом породы.

Наиболее распространены терригенные и карбонатные коллекторы, с которыми связаны основные извлекаемые запасы углеводородов, реже встречаются глинисто-кремнисто-битуминозные, вулканогенные и вулканогенно-осадочные, магматические и др.

Основной масса терригенных коллекторов относится к поровому типу, характеризующемуся межзерновым пустотным пространством, их называют межзерновыми (гранулярными); встречаются также коллекторы со смешанным характером пустотного пространства (трещинно-поровые и даже кавернозно-поровые разности - если часть зёрен сравнительно легко выщелачивается). Свойства терригенных коллекторов зависят, прежде всего, от гранулометрического состава, формы и характера поверхности, слагающих породу зёрен, степени их отсортированности, окатанности, вида упаковки обломочных зёрен; количества, состава и типа цемента. Эти параметры обусловливают геометрию порового пространства, определяют величины эффективной пористости, проницаемости, принадлежность пород к различным классам коллекторов порового типа. На фильтрационную способность терригенных коллекторов влияет также количество, минеральный состав и характер распределения глинистой примеси, снижающей проницаемость. Среди множества классификаций терригенных коллекторов наиболее популярная построена с учётом их гранулометрического состава, эффективной пористости и проницаемости. По этим параметрам различают шесть классов терригенных коллекторов с проницаемостью соответственно свыше 1000 мД (миллидарси), 1000-500, 500-100, 100-10, 10-1 и менее 1 мД (1 мД≈ 1·10 -3 мкм 2). Каждому типу песчано-алевритовых пород в пределах того или иного класса соответствует своя величина эффективной пористости. Породы, относящиеся к классу с проницаемостью менее 1 мД, в естественных условиях обычно содержат 90% и более остаточной воды и не являются коллекторами промышленного значения. Лучшими фильтрационными свойствами обладают кварцевые пески вследствие низкой сорбционной способности кварца. Наличие трещин спайности и таблитчатый габитус (облик) большинства минералов, слагающих полимиктовые песчаники, а также их более высокая сорбционная ёмкость значительно снижают коэффициент фильтрации флюидов.

Для карбонатных коллекторов характерен наиболее широкий спектр типов: гранулярные (оолитовые и обломочные известняки), трещинные (плотные известняки и доломиты), кавернозные (результат карста), биопустотные (органогенные известняки). Особенности карбонатных коллекторов - ранняя литификация, избирательная растворимость, склонность к трещинообразованию - обусловили большое разнообразие морфологии и генезиса пустот. Качество карбонатных коллекторов определяется первичными условиями седиментации, интенсивностью и направленностью постседиментационных преобразований, за счёт влияния которых развиваются дополнительные поры, каверны, трещины и крупные полости выщелачивания. Карбонатные коллекторы характеризуются крайней невыдержанностью свойств и их значительным разнообразием в зависимости от фациальных условий образования, что затрудняет их сопоставление. Фациальные условия образования карбонатных пород в большей мере, чем в терригенных, влияют на формирование коллекторских свойств. По минеральному составу карбонатные породы менее разнообразны, чем терригенные, но по структурно-текстурным характеристикам имеют гораздо больше разновидностей. Влияние вторичных преобразований особенно велико в породах с первично неоднородной структурой порового пространства (органогенно-обломочные разности). По характеру постседиментационных преобразований карбонатные породы отличаются от терригенных, прежде всего степенью уплотнения. Остатки биогермов с самого начала представляют практически твёрдые образования, и далее уплотнение идёт уже медленно. Карбонатный ил и мелкообломочные, комковато-водорослевые карбонатные осадки быстро литифицируются, пористость несколько сокращается, но значительный объём порового пространства «консервируется». Трещиноватость, как правило, составляющая в породах 0,1-1%, в карбонатных коллекторах может достигать 1,5-2,5%. При значительной мощности трещиноватых продуктивных горизонтов ёмкость трещин имеет существенное значение для оценки полезного объёма пластов. Дополнительная ёмкость карбонатных коллекторов трещинного типа создаётся также стилолитовыми швами, образование которых связано с неравномерным растворением под давлением. Глинистая корочка на поверхности стилолитовых швов представляет нерастворимый остаток породы. Часто горизонты развития стилолитов являются наиболее продуктивными в разрезе, что обусловлено вымыванием глинистых корочек. Наиболее значительные запасы углеводородов сосредоточены в кавернозно-поровом и поровом типах карбонатных коллекторов. Лучшими карбонатными коллекторами являются рифовые известняки, из которых были получены и рекордные дебиты нефти (десятки тысяч тонн в сутки).

В глинисто-кремнисто-битуминозных коллекторах преобладают трещинные и порово-трещинные типы. Породы характеризуются значительной изменчивостью минерального состава, неодинаковой обогащённостью органическим веществом. Микрослоистость, развитие субкапиллярных пор и микротрещиноватость обусловливают относительно низкие фильтрационно-ёмкостные свойства. В некоторых разностях пористость достигает 15% при проницаемости в доли мД. В таких породах участки с повышенной пористостью и проницаемостью разнообразной формы возникают в процессе катагенеза (синхронно с генерацией нефтяных и газовых углеводородов и перестройкой структурно-текстурных особенностей минеральной матрицы породы). Считают, что в седиментогенезе образуются микроблоки породы, покрытые плёнкой сорбированного органического вещества. Колломорфный кремнезём, обволакивая агрегаты глинистых минералов, создаёт на их поверхности сложные комплексы с участием органического вещества и кремнезёма (возникают так называемые кремнеорганические рубашки). Процессы трансформации глинистых минералов и выделения связанной воды приводят к образованию мелких послойных трещин. Отдельные участки породы вследствие роста внутреннего давления пронизываются системой трещин вдоль поверхности «рубашек». При вскрытии таких коллекторов, как правило, отмечаются разуплотнение и аномально высокое пластовое давление. Повышению трещиноватости породы способствуют и тектонические процессы. При отборе нефти из таких пород трещины смыкаются - это коллекторы «одноразового использования». В них нельзя закачать газ или нефть, как это делают при строительстве подземных хранилищ в других типах пород.

Среди вулканогенных и вулканогенно-осадочных коллекторов наиболее часто встречаются трещинный и порово-трещинный типы. Эти коллекторы отличаются большой ролью трещиноватости, резкой изменчивостью свойств в пределах месторождения. Нефть и газ в туфах, лавах и других разностях связаны с пустотами, которые образовались при выходе газа из лавового материала, или с вторичным выщелачиванием и трещиноватостью. Нефтеносность этих пород всегда вторична. Особенность таких коллекторов заключается в несоответствии между сравнительно низкими величинами ёмкости, проницаемости и высокими дебитами скважин, вскрывающих залежи в этих породах.

Формирование коллекторов в магматических и метаморфических породах связано с метасоматозом и выщелачиванием в результате гидротермальной деятельности, контракцией (усадкой) при остывании породы, дроблением по зонам тектонических нарушений. Основной объём пустот в магматических коллекторах принадлежит микротрещинам и микрокавернам. Пористость пород в большинстве случаев не превышает 10-11%. Проницаемость матрицы невысока, но в результате развития кавернозности и трещиноватости в целом проницаемость достигает сотен мД.

Выявление коллекторов нефти и газа проводится комплексом геофизических исследований скважин и анализом лабораторных данных с учётом геологической информации по месторождению. При изучении карбонатных коллекторов, кроме традиционных литологических и промыслово-геофизических методов, используют фото и ультразвуковой каротаж, метод капиллярного насыщения пород люминофорами и др.

Лит.: Справочник по геологии нефти и газа / Под редакцией Н. А. Еременко. М., 1984; Геология и геохимия нефти и газа / Под редакцией Б. А. Соколова. 2-е изд. М., 2004.

Коллекторы классифицируются по целому ряду признаков, поэтому имеется множество различных их классификаций. Наиболее важными классификационными критериями являются:

Условия аккумуляции и фильтрации флюидов;

Величина открытой или эффективной пористости и величина проницаемости;

Характер проницаемости;

Генезис и тип пород.

Породы-коллекторы классифицируются и по другим критериям, или классификационным признакам, например: по масштабам распространения в пределах нефтегазоносных комплексов; толщине и выдержанности литологического состава; содержанию остаточной воды; количеству и составу цемента.

По условиям фильтрации пластовых флюидов коллекторы делятся на простые и сложные (смешанные). К простым коллекторам относятся поровые и чисто трещинные, а к смешанным - трещинно-поровые и порово-трещинные. Чисто трещинные и смешанные (трещинно-поровые и порово-трещинные) коллекторы часто называют просто трещинными , поскольку фильтрация в них обусловлена, главным образом, наличием трещин. Г.И. Теодорович по характеру проницаемости разделил коллекторы три группы: равномерно-проницаемые, неравномерно-проницаемые и трещиноватые .

По условиям аккумуляции флюидов , которые определяются морфологией пустотного пространства коллекторы также делятся на простые и сложные (смешанные).

В простых коллекторах пустотное пространство представлено следующими видами: порами, кавернами, карстовыми полостями и трещинами .

Поровые коллекторы обычно связаны с терригенными породами – песчаниками и алевролитами и реже - с органогенными карбонатными породами. Особенность этих пород-коллекторов заключается в том, что в них как емкость, так и фильтрация обусловлена структурой межгранулярной пористости - межзерновыми сообщающимися порами, образующими поровые каналы. Диапазон изменения объема порового пространства в этих коллекторах очень большой – от единиц до 40-50 %. Остальные виды пустотного пространства - каверны, карстовые полости и трещины в основным вязаны с карбонатными коллекторами.

Чисто трещинные коллекторы встречаются редко. Образуются они за счет вторичной трещиноватости в плотных жестких и хрупких породах, минеральная часть которых практически лишена пористости. Такими породами являются массивные пелитоморфные известняки, доломиты, мергели, песчаники, окремнелые аргиллиты, сланцы а также метаморфические, магматические и глинисто-кремнисто-сапропелевые породы. Часть пустот в коллекторах трещинного типа может быть образована межзерновыми порами, однако их суммарный объем составляет не более 5-7 %. К тому же часть этих пор является изолированной. Чисто трещинные коллекторы обладают низким объемом пустотного пространства, обычно не более 2,5-3 %.

Смешанное пустотное пространство характерно для карбонатных пород, где оно представлено сочетанием видов пустот, которые образуют следующие типы пустотного пространства: порово-трещинное, порово-каверновое, карстово-каверновое, порово-каверново-карстовое, порово-стилолитовое. Трещинно-поровые коллекторы преимущественно связаны с карбонатными породами, пустотное пространство которых образовано, главным образом, межзерновыми порами и кавернами. При характеристике типа коллектора основной вид пустот ставится в названии на последнее место.

По величине эффективной пористости коллекторы делятся на классы, как в зависимости от типа горных пород, так и не зависимо от них. П.П. Авдусин и М.А. Цветкова (1943) разделили терригенные коллекторы на пять классов. Практическое значение имеют коллекторы первых четырех классов.

Таблица. Классификация терригенных пород-коллекторов по величине эффективной пористости

По величине коэффициента проницаемости коллекторы также делятся на классы, как в зависимости от типа горных пород или типа фильтрующих пустот, так и не зависимо от них. Например, Г.И. Теодорович, не зависимо от типа фильтрующих пустот разделил все породы-коллекторы по величине коэффициента проницаемости на пять классов (таблица).

Таблица. Классификация коллекторов по величине коэффициента проницаемости (по Г.И. Теодоровичу)

Практическое значение для нефтенакопления и нефтеотдачи имеют коллекторы первых трех классов, а для газов также и четвертый класс.

Широко используются классификации по эффективной пористости и проницаемости раздельно для терригенных (песчано-алевритовых) коллекторов (А.А. Ханина, 1969) и карбонатных коллекторов (И.А. Конюхова, 1964). В классификации А.А. Ханина выделено шесть классов песчано-алевритовых коллекторов по их гранулометрическому составу, величине эффективной пористости и проницаемости.

Таблица. Оценочная классификация песчано-алевритовых коллекторов нефти и газа с межзерновой пористостью (по А.А. Ханину, 1969)

П р и м е ч а н и е. Диаметр частиц (в мм): песчаник среднезернистый 0,5-0,25, песчаник мелкозернистый 0,25-0,1, алевролит крупнозернистый 0,1-0,05, алевролит мелкозернистый 0,05-0,01.

В классификации И.А. Конюхова выделено три группы карбонатных коллекторов по качественной оценке их емкости, и восемь классов по количественным значениям проницаемости и эффективной пористости.

Таблица. Классификация карбонатных коллекторов (по И.А. Конюхову)

5. По вещественному (литологическому) составу горных пород выделяются две основные группы коллекторов: терригенная и карбонатная. Кроме них существуют коллекторы, связанные с глинистыми, вулканогенными, вулканогенно-осадочными, метаморфическими и магматическими породами, а также породами кор выветривания.

Терригенные или песчано-алевритовые коллекторы . Коллекторы этого типа занимают основное место среди пород-коллекторов. С ними связана весьма значительная часть запасов нефти и газа. ЁФС терригенных коллекторов определяются в основном структурой порового пространства, поэтому их часто называют гранулярными или межгранулярными. Их общей особенностью является постепенное понижение ЁФС с глубиной за счет уплотнения пород, минерального новообразования и других процессов.

Таблица. Классификация коллекторов нефти и газа по литологическому составу (по Б.К. Прошлякову и др.)

Карбонатные коллекторы . Они занимают существенное место среди пород-коллекторов. Причём значительная часть мировых запасов нефти и газа связана с трещинно-поровыми типами, небольшая с порово-трещинными и ничтожная с чисто трещинными.

Карбонатные породы являются полигенетической группой и по генезису первичных элементов могут быть хемогенными, органогенными, обломочными и смешанными. Часто в них присутствует терригенный материал, а иногда - пирокластический материал и аутигенные примеси в виде сульфатов, силикатов и других минералов.

Разные генетические группы карбонатных пород имеют различные характеристики первичной пористости и проницаемости. Уже на этапе формирования лучшими емкостными и фильтрационными характеристиками отличаются органогенные, особенно рифогенные, обломочные и оолитовые карбонатные породы. Они имеют поры сравнительно правильной формы, которые равномерно распределены в объеме породы. Поровые каналы обычно имеют значительные размеры.

Карбонатные породы имеют сложный характер емкостного пространства, образованного порами, кавернами, карстовыми и стилолитовыи полостями, а также трещинами и очень неравномерное его распределение в объеме породы. Емкость в карбонатных коллекторах образуется и преобразуется на всех стадиях литогенеза и зависит, главным образом, от межзерновой пористости, а фильтрация обусловливается преимущественно трещинами, поэтому карбонатные коллекторы часто называют трещинными .

Глинистые коллекторы . Эти коллекторы нефти и газа известны очень давно в разных регионах мира, в том числе на Северном Кавказе. Наиболее широко глинистые коллекторы распространены в центральной и южной части Западной Сибири, где они называются «баженитами. Там, на границе нижнего мела и верхней юры, в составе региональной покрышки развита баженовская свита, которая является промышленно нефтеносной.

У глинистых аргиллитоподобных коллекторов баженовского типа есть общее характерное свойство – высокое, в среднем 22,5 %, содержание органического вещества (ОВ) сапропелевого типа, наличие свободной кремнекислоты, в среднем 29,5 % и проявление сингенетичной нефтеносности. Таким образом, эти породы имеют смешанный трехкомпонентный глинисто-кремнисто-сапропелевый состав. Пустотное пространство глинистых коллекторов связано с их текстурной неоднородностью, имеет сложную морфологию и трещинный характер. Текстурная неоднородность определяется наличием жесткого каркаса из кремнекислоты и ОВ.

Кроме трехкомпонентных баженитов, среди глинистых коллекторов выделяются четырехкомпонентные породы, состоящие из глинистых минералов, кремнезема, пелитоморфного карбоната и ОВ , содержание которого находится в пределах от 8 до 20 % по весу. Их характерным примером являются породы доманиковой свиты верхнего девона Волго-Уральской НГП, или просто - доманикиты .

Глинистые коллекторы Северного Кавказа – хадумиты , являются двухкомпонетными. Они состоят из глинистых минералов и кремнезема. Название дано по хадумской свите майкопской серии пород.

Коллекторы магматических, метаморфических пород и их кор выветривания . Данные типы коллекторов связаны с фундаментом осадочных бассейнов (ОБ). В настоящее время на Земле известно порядка 450 промышленных месторождений нефти и газа, часть которых по своим запасам относится к крупным и уникальным. Общие начальные запасы месторождений фундамента составляют 15 % мировых доказанных запасов категории А + Б. Большинство залежей - 40 %, и более 75 % запасов УВ, находящихся в фундаменте связано с кислыми породами: гранитами и гранитоидами.

Характерной особенностью нефтегазоносносности фундамента является то, что коллекторы и флюидоупоры в нём могут быть представлены одной и той же породой. Пустотное пространство пород-коллекторов имеет каверново-трещинный и трещинный типы, которые связаны с рядом вторичных процессов: палеогипергенными и паледенудационными, дизъюнктивной тектоникой, гидротермальным выщелачиванием неустойчивых минералов, контракционной усадкой магматических пород и сочетанием этих процессов.

Морфологически выделяются следующие типы коллекторов:

1) выступовые, связанные:

а - с эрозионно-тектоническими выступами с массивным типом природного резервуара;

б – со сложным распределением пустотного пространства внутри гранитных массивов в виде гнёзд, линз, жил, «ёлочки»;

2) площадные, связанные с корой выветривания;

3) линейные, связанные с зонами динамического влияния разломов;

4) жильные, связанные:

а - с зонами повышенной тектонической трещиноватости и гидротермальной деятельности;

б – с древними речными долинами, как правило, дренировавших зоны разломов;

5) линейно-узловые, связанные с узлами пересечения тектонических разломов.

Часто кора выветривания и базальный горизонт осадочного чехла образуют единый природный резервуар.

6. По распространенности выделяют породы-коллекторы, которые имеют региональное, зональное и локальное распространение.

7. По толщине и выдержанности литологического состава выделяют коллекторы, характеризующиеся выдержанностью или невыдержанностью толщин, литологического состава и фильтрационно-емкостных свойств.

Cтраница 1


Порода-коллектор - пористая осадочная порода, в которой удерживается газ (нефть); обладает проницаемостью.  

Порода-коллектор практически никогда не состоит из одного минерала. Локальный микролазерный анализ на участке кварцевой песчинки дает характерные спектральные линии для алюминия, кремния, калия, кальция, бария, магния и железа. Следовательно, стенки пор, образуемые зернами минералов, обладают различной специфической физико-химической природой. Энергия и характер связи пластовых флюидов с поверхностью пор также различаются.  

Порода-коллектор практически никогда не состоит из одного минерала. Локальный микролазерный анализ на участке кварцевой песчинки дает характерные спектральные линии для алюминия, кремнкя, калия, кальция, бария, магния и железа. Следовательно, стенки пор, образуемые зернами минералов, обладают различной специфической физико-химической природой. Энергия и характер связи пластовых флюидов с поверхностью пор также различаются.  

Порода-коллектор - пористая или трещиноватая порода, которая может содержать в своих пустотах нефть, газ или воду.  

Порода-коллектор, как и всякое другое пористое тело, при пропускании через нее различных жидкостей или газовых смесей частично задерживает (поглощает) содержащиеся в них вещества. Процесс поглощения имеет сложную природу и обычно состоит из нескольких совместно протекающих процессов, в результате которых могут изменяться состав, состояние и свойства коллектора. Свойство породы-коллектора поглощать из фильтрующихся растворов или газовых смесей содержащиеся в них вещества называется поглотительной, или адсорбционной, способностью.  

Порода-коллектор - это порода, которая может собирать в себе что-то полезное, нужное. Однако этого недостаточно, нужно, чтобы нефть и газ (поскольку в разделе рассматриваются породы-коллекторы нефти и газа) при определенных условиях могли в этой породе перемещаться по системе пустот.  

Порода-коллектор, в которой удерживается газ, должна быть пористой и проницаемой. Пористость характеризует емкость породы-коллектора по отношению к флюиду (нефти или газу), а проницаемость показывает, насколько легко флюид молсет проходить через породу. Чаще всего породы-коллекторы представляют собой проницаемые песчаники или карбонаты, но иногда газ обнаруживается и в упругих (непроницаемых) пластах.  

Палеополость - карбонатная порода-коллектор с очень сложным геологическим строением; представляет собой древние пещеры, соедине нные трещинами.  

Истощенный пласт - подземная порода-коллектор, которая не содержит промышленных количеств нефти или газа; используется для хранения природного газа.  

Как уже отмечалось выше, порода-коллектор в естественных условиях ее залегания подвержена влиянию двух видов давления: горного, передающего давление вышележащих горных пород и действующего в основном на скелет породы, и пластового, обусловленного давлением насыщающей пласт жидкости, приводящего к всестороннему сжатию зерен породы и компенсирующего часть горного давления.  

Структурные ловушки образуются, когда порода-коллектор деформируется или разрушается под действием высокого давления, а также в результате геологических процессов. Складка, направленная вниз, называется синклиналью. Свод или купол - это поднятие горных пород, аналогичное антиклинали. И те и другие образуют приподнятые участки. Такие структуры - первый тип ловушек углеводородов, обнаруженный геологами-разведчиками. Своды и антиклинали обычно асимметричны и вмещают в себя несколько газосодержащих слоев.  

Чтобы пласт можно было отнести к продуктивным, порода-коллектор должна иметь промышленные запасы и обеспечивать промышленную нефтегазоотдачу. Удельное содержание полезного ископаемого (нефти или газа) зависит от многих факторов, и в том числе от пористости породы, а нефтегазоотдача - в первую очередь от проницаемости породы и энергии пласта.  

Чтобы пласт можно было отнести к продуктивным, порода-коллектор должна иметь промышленные запасы и обеспечивать промышленную нефтегазоотдачу. Удельное содержание полезного ископаемого (нефти или газа) зависит от многих факторов, и в том числе от пористости породы, а нефте-газоотдача - в первую очередь от проницаемости породы и энергии пласта.  

Такое состояние вполне соответствует условиям в пласте, где порода-коллектор в любой части пласта содержит некоторое количество связанной воды (как правило, по солевому составу близкой к пластовой), обеспечивающей равновесную с водой влажность гидрофильных породообразующих минералов. Поэтому значения проницаемости при установившейся фильтрации пластовой воды наиболее объективно характеризуют потенциальную проводимость породы-коллектора. Именно это значение проницаемости следует считать за абсолютную проницаемость пласта по жидкости.  

Жидкая фаза промывочной жидкости, которая отфильтровывается в пласт-коллектор (фильтром являются порода-коллектор и глинистая корка на стенках скважины) вследствие разности давления столба жидкости в скважине и пластового давления.  

Основная часть нефтяных и газовых месторождений приурочены к осадочным породам - обломочным, органогенным и хемогенным.

Обломочные породы - коллекторы образуются за счет разрушения прежде существовавших горных пород - мXагматических и магматические.

Обломочные делятся на:

1. терригенные

рыхлые: сцементированные:

песок > 0,1 мм песчаник

алеврит 0,1 - 0,01 алевролит

глина < 0,01 аргиллит

Частицы разрушенных г.п. могут быть сцементированы глинистым и карбонатным цементом. Если цемент глинистый, то при бурении водоотдача должна быть минимальной, если водоотдача повышеннная, то глины будут набухать и проницаемость пласта будет падать и обусловит длительное освоение скважин и низкие дебиты.

Для повышения дебитов принимают глинокислотные обработки, растворяющие цемент и увеличвающие проницаемость.

Если цемент карбонатный, то применяют солянокислотные обработки. Большинство коллекторов месторождений Западной Сибири являются терригенными.

Обломочные карбонатные породы - это обломки известняка, доломита, карбонатных зерен...

Коллектора из карбонатных породов представлены в Вольго-Уральской и Тиманопечерских провинциях.

Органогенные породы - коллекторы - это известняки биогенные из останков животных и растительных организмов т.е. рифовые образования.

Это месторождения уралоповолжья, украины, белоруссии, ближнего и среднего востока, индонезии, брунея, венесуэлы, мексики, пермской области.

Хемогенные породы-коллекторы - известняки и доломиты, образующиеся из-за химических реакций при сносе в море солей, кальция и магния.

В пордах коллекторах выделяют Поры:

Первичные поры (образованы в ходе осадконакопления):

Структурные (между частицами зерен пород)

Поры между плоскостями пород

Биогенные пороы при разложении органики

Межгранулярные и межкристаллические

вторичные:

как результат выщелачивания, перекристаллизации, доломитизации и эрозионных процессов.

Первичные поры обычно заполнены остаточной или связанной водой, сохранившейся в породе. Вторичные поры содержат нефть и газ.ы

Неколлекторные породы – это породы, которые не отдают нефть и газы. Коллекторы – накапливающие и отдающие нефть, газ и воду.ы

Итоги исследования щлама и керна увязывают с данными ГИС, результатами испытаний и гидродинамических исследованиях. Наиболее пористые трещиноватые породы насыщенные УВ в процессе отбора разрушаются. В ЗС коллекторы определяются в основном по ГИС. Продуктивные пласты характеризуются отрицательными аномалиями кажущегося сопротивления и уменьшением диаметра скважин на кавернометрии.

37. Методика выделения коллекторов в терригенном в разрезе. Продуктивные пласты характеризуются отрицательными аномалиями кажущегося сопротивления горных пород (нефть и газ ток не проводят) и уменьшением диаметра скважин на кавернометрии.

Кавернометрией определяется диаметр скважин

При бурении глинистый раствор отфильтровывается в пласт и на поверхности интервала образуется глинистая корка и диаметр уменьшается.

38 . В карбонатных коллекторах три методы выделения из-за сложного строения: нефтегаз в порах, кавернах и трещинах.

Каротаж – испытание – каротаж.

Замер удельного электрического сопротивление до и после испытания позволяют выделять нужные интервалы.

После получения притоков сопротивление больше.

Метод двух растворов: сперва замеряют электрическое сопротивление, когда скважина заполнена буровым раствором, затем его меняют на воду и снова определяют сопротивление.

Вода обладает электропроводностью и проникает в пласть и сопротивление будет уменьшаться.

Совместное использование НГК и АГК. Методом НГК определяют общую пустотность пород: поры, каверны и трещины. АГК – только трещины. Так выделяется коллектор.

39. Породы коллекторы обнаруживаются также по увеличению скорости бурения, проходки на долото, провалы инструмента, поглощению бурового раствора, нефтегазоводопроводимости тк коллекторы пористые и проницаемости.

41. ФЕС характеризуется пористостью, кавернозностью и трещиноватостью.

Поры - это пустоты с диаметром < 2 мм

Виды пористости - полная, характеризуется сообщающимися и несообщающимися порами К п = V пор\V образца породы * 100 = %

Несообщающиеся поры не отдают нефть и газ.

открытая (только сообщающиеся поры). Юзается при подсчете запасов и составлении проектов разработки. К оп = (вес сухого образца керна - вес насыщенного керосином под вакуумом в воздухе образца) /(вес насыщенного керосином под вакуумом в воздухе образца - вес насыщенного керосином образца в керосине)

По размерам поры:

сверхкапиллярные = 2 - 05 мм

капиллярные = 05 - 0,0002

субкапиллярные < 0,0002

Сверх и просто капиллярные могут быть нефтегазоносны, а суб иметь остаточную воду.

Максимум открытой пористости - это около 30-40 процентов.

В ЗС наиболее часто встречается Кпо = 15-17%

К по = 10 - 17% - это трудноизвлекаемые запасы.

Для добычи нефти и газа бурят горизонтальные скважины, боковые стволы, проводят гидроразрыв пласта.

Если коэфициент открытой пористости < 10%, то залежи нерентабельны и исключаются из подсчета запасов.

В карбонатных коллекторах нефть и газ в трещинах и нижние пределы пористости 2-3%, и только с меньшей - нерентабельны.

Кавернозность. Пустоты с диаметром больше 2 мм. Каверны образуются в процессе отложения известняков в рифах и при разложении ОВ и циркуляции пластовых вод. При подсчете запасов учитывают по коэффициент кавернозности.

Каверны образуются в процесе отложения известняков в рифах и при разложении ОВ и при циркуляции пластовых вод.

К кавернозности = объем каверн \ объем пор * 100 = %

При наличии каверн и трещин дебиты на два-три порядка выше, ибо проницаемость в 100-1000 раз больше.

Трещиноватость.

Макротрещины > 40-50 мм

Микротрещины < стольки же

При бурении породы разрушаются, поэтому можно изучать только микротрещины. Т.к. основные запасы в трещинах, то трещиноватость изучают по промысловым данным с помощью фотокаратожа и телекамер.

При наличии трещин большие дебиты.

Проницаемость.

П - способность породы пропускать через себя нефть, газ или воду.

По формуле Дарси к пр = (расход флюида через образец * вязкость флюида * длина образца)\(площадь поперечного сечения образца*разница давлений на входе и выходе)

Максимальная проницаемость достигает 2-5 Дарси.

Проницаемость в ЗС обычно 0,05 - 0,5 мкм2

Если проницаемость меньше 0,05 то запасы трудноизвлекаемы. Для добычи трудноизвлекаемых проводят гидроразрыв.

42. Неоднородность, её виды и количественная оценка

Коллектора месторождений в Западной Сибири имеют высокую степень неоднородности.

Неоднородность - широкое изменение вещественного состава и коллекторских свойств по площади и по разрезу.

Есть два вида неоднородности:

Макронеоднородность

Изменение толщин продуктивных пластов и разделяющих непроницаемых прослоев. Изучают по структурным картам общих и нефтяных толщин.

h общ - толщина пласта от кровли до подошвы

h общ - h эфф = h коллектора

h н г = толщина прослоек

Для характеристик параметров строят карты общих эффективных толщин. Изучают по детальным геопрофилям.

Микронеоднородность - изменение коллекторских свойств по площади, по разрезу.

Микронеоднородность характеризуется коэффициентом песчанистости. К песч = h эфф\h общ= 0 - 1

Если 1-0,7 - то высокопрододуктивная


– это горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке месторождений. Абсолютное большинство пород-коллекторов имеют осадочное происхождение. Коллекторами нефти и газа являются как терригенные (пески, алевриты, песчаники, алевролиты и некоторые глинистые породы), так и карбонатные (известняки, мел, доломиты) породы.

Свойства коллекторов.

Пористость – это процент содержания пустот в породе. Кристаллические породы могут иметь менее 1% пустот, тогда как некоторые песчаники около 35–40%, а кавернозные известняки могут обладать даже еще большей пористостью.

Различают общую, открытую и эффективную пористость коллекторов.

Общая пористость заключается в отношении объема всех пор к объему всей породы.

Открытая пористость заключается в отношении объема пор, которые сообщаются между собой, к объему породы.

Эффективная пористость заключается в отношении объема пор, по которым возможно течение флюида, к объему породы.

Наиболее обычный тип пустот – промежутки между зернами крупнозернистых осадочных пород, подобных песчаникам. Размер зерен не влияет на процент пористости, если этот размер одинаков, но при смешении зерен разного размера мелкие зерна частично заполняют пространство между крупными, уменьшая тем самым процент пористости.

Другой распространенный тип пустот – это каверны растворения в карбонатных породах – известняках и доломитах. Всякий раз, когда такие породы находятся в зоне проникновения или циркуляции подземных вод, они в какой-то степени растворяются, и результатом может быть образование высокопористых пород. Размер каверн выщелачивания изменяется от микроскопических пор до гигантских пещер. Еще одним типом природных пустот являются каверны выветривания, а также трещины и щели.

Различают следующие виды пустот:

Поры между зернами обломочных и некоторых карбонатных пород, обусловленные текстурными особенностями этих пород

Поры растворения (каверны выщелачивания), образуются в результате циркуляции подземных вод преимущественно в горных породах

Поры и трещины, возникающие под влиянием химических процессов (процесс доломитизации - превращение известняка в доломит, сопровождающийся уменьшением объема)

Пустоты и трещины, образовавшиеся в результате выветривания

Трещины тектонического происхождения

По происхождению поры делятся на:

1) Первичные-образовываются во время формирования породы.

Пустоты между частицами и зернами, слагающими породу

Пустоты между плоскостями наслоения

Пустоты, образованные после разложения органики

Пустоты изверженных пород

2) Вторичные-образовываются после формирования породы.

Поры, образованные в результате растворяющего действия воды

Трещины, связанные с действием тектонических сил

Трещины, образованные в результате перекристаллизации породы

По величине поры делятся на:

Обыкновенные(сверхкапиллярные)

Капиллярные

Субкапиллярные

Проницаемость – это свойство пород быть проводником при движении жидкостей или газов. Проницаемость измеряется в Дарси. Некоторые глины имеют такую же высокую пористость, как и песчаники, но они непроницаемы, так как размер их пор очень мал. Чем крупнее поры, тем выше проницаемость. Прямой связи между пористостью и проницаемостью нет, хотя обычно породы с невысокой пористостью (10–15%) имеют также и низкую проницаемость. Если проницаемость мала, то нефть будет только слабо сочиться из породы и продуктивность окажется ниже экономически эффективной. Поэтому трудно извлекать нефть из глин, хотя обильные признаки нефти в них имеются во многих районах мира. Методы извлечения нефти из глинистых пород разрабатываются.

Выделяют абсолютную, эффективную и относительную проницаемость.

Абсолютная(физическая)-это проницаемость химически-инертного газа по отношению к породе(на практике спользуют сухой инерный газ или воздух)

Эффективная(фазовая)-это проницаемость пористой среды при наличии в порах жидкости или газа(величина зависит не только от физических свойств породы, но и от процентного соотношения насыщающих породу жидкостей или газов); эффективная проницаемость всегда ниже абсолютной

Относительная, она равна отношению эффективной проницаемости к абсолютной

Из определения пород-коллекторов следует, что они должны обладать емкостью, т.е. системой пустот - пор, трещин и каверн. Однако далеко не все породы, обладающие емкостью, являются проницаемыми для нефти и газа, т.е. коллекторами. Поэтому при изучении коллекторских свойств горных пород определяют не только их пустотность, но и проницаемость. Проницаемость горных пород зависит от поперечных (к направлению движения флюидов) размеров пустот в породе. Кроме этого горная порода должна обладать высоким коэффициентом нефтегазонасыщенности.

Хотя обычно породами-коллекторами являются песчаники и карбонатные породы, любые породы, которые обладают необходимыми геологическими или структурными характеристиками, могут содержать нефть в промышленных количествах.

Основными показателями коллекторских свойств горных пород является пористость, проницаемость и нефтегазонасыщенность.

Изменение коллекторских свойств с глубиной.

С увеличением глубины залегания пород под влиянием геостатического давления увеличивается их плотность, а следовательно пористость уменьшается и ухудшаются емкостно-фильтрационные свойства.

Это относится преимущественно к гранулярным коллекторам (пески, песчаники, алевролиты).

Улучшение коллекторских свойств с глубиной наблюдается у карбонатных и других сильноуплотненных хрупких пород, подверженных растрескиванию под влиянием тектонических и других процессов.

В терригенных горных породах - коллекторах вторичная пористость на больших глубинах при высоких температурах возникает в результате выщелачивания и растворения карбонатного или карбонатно-глинистого цемента под воздействием агрессивных горячих вод, насыщенных углекислотой.

Классификация пород-коллекторов.

Все коллекторы по характеру пустот подразделяют на три типа:

Гранулярные или поровые (только обломочные горные породы)

Трещинные (любые горные породы)

Каверновые (только карбонатные породы)

Выделяют три больших группы коллекторов по степени проницаемости:

Равномернопроницаемые

Неравномернопроницаемые

Трещиноватые

Выделяют пять классов коллекторов по величине эффективной пористости:

Класс А, пористость >20%

Класс В, пористость 15-20%

Класс С, пористость 10-15%

Класс D, пористость 5-10%

Класс Е, пористость <5%

Каждый из этих классов разделяется еще на 3 группы по скорости движения жидкости.Практическое значение имеют первые четыре класса (промышленный интерес).

По характеру и природе порового пространства коллекторы делятся на 2 большие группы:

Коллекторы с межзерновыми (межгранулярными) порами - пески, песчаники, алевролиты