Расчет фундаментной плиты на упругом основании. Принципы расчета плитных фундаментов на упругом основании

→ Фундаменты


Теории изгиба балок и плит на упругом основании и условия их применимости к расчету гибких фундаментов


Для гибких фундаментов, которые в основном воспринимают изгибающие моменты, образующиеся в результате совместной работы с основанием, предположение о линейном распределении реактивных давлений оказывается неприемлемым, потому что оно зависит от жесткости фундамента и податливости грунтового основания.

Замена реальной эпюры контактных давлений линейно распределенной приводит к существенным погрешностям при определении изгибающих моментов и поперечных сил.

К гибким фундаментам можно отнести ленточные и отдельные железобетонные фундаменты, а также сплошные железобетонные плиты и некоторые типы коробчатых фундаментов.

В зависимости от вида используемого фундамента различают плоскую задачу, когда условия работы поперечного сечения фундамента одинаковы по длине. Например, ленточный фундамент под стену в поперечном сечении имеет одинаковую форму деформации по всей длине.

В условиях пространственной задачи будут находиться ленточный фундамент под колонны, принимаемый в поперечном направлении жестким, и фундаментные плиты различной формы, работающие на изгиб в двух направлениях.

В настоящее время большое распространение при проектировании гибких фундаментов получили теории расчета балок и плит на упругом основании, которые справедливы для линейно деформируемых оснований, причем наибольшее применение получили следующие методы:
1) местных деформаций с постоянным и переменными коэффициентами постели;
2) упругого полупространства;
3) упругого слоя ограниченной толщины на несжимаемом основании;
4) упругого слоя с переменным модулем деформации основания по глубине.

Эти теории исходят из предположения о совместности деформации, фундамента и грунта, т. е. считается, что перемещение фундамента в данной точке контакта равно осадке поверхности грунта.

В методе местных упругих деформаций не учитываются осадки грунта основания за пределами площади загружения, что дает возможность представить такое основание в виде системы несвязанных между собой упругих пружин (рис. 7.1, а). Такие условия работы грунтового основания не подтверждаются экспериментальными данными, которые показывают, что в реальных условиях нагружения оседают не только нагруженная поверхность, но и соседние участки грунта (рис. 7.1, б). Это ограничивает область применения данного метода на практике.

Рис. 7.1. Схемы упругого основания

Метод местных упругих деформаций используют для слабых грунтов основания, для которых можно не учитывать осадки вне зоны приложения внешней нагрузки или в случае незначительной мощности деформируемого грунта, подстилаемого скальным основанием при полупролет рассчитываемого фундамента.

С целью расширения области применения данного метода для расчета гибких фундаментов стали учитывать переменное значение коэффициента постели по длине балки в зависимости от уровня действующего реактивного давления.

Метод упругого полупространства не имеет недостатков, присущих методу местных деформаций, так как он базируется на решениях классической теории упругости, рассматривающей однородные, упругие линейно деформируемые тела.

В соответствии с этими решениями осадки основания имеют место не только на участке под гибким фундаментом, но и за его пределами (рис. 7.1, б).

Однако и метод расчета гибких фундаментов при моделировании грунтового основания упругим полупространством не свободен от некоторых недостатков. В частности, экспериментальными исследованиями было доказано, что осадки за пределами площади загружения затухают значительно быстрее, чем это происходит согласно решению задачи деформирования упругого полупространства. Это связано с тем, что исходные предпосылки теории упругости могут быть применимы к грунтам только с. некоторыми ограничениями, допускающими некоторую идеализацию реальных свойств.

Наблюдения за деформациями оснований гибких фундаментов показали, что основные деформации уплотнения грунта происходят в пределах относительно небольшой глубины. Анализ результатов таких наблюдений показал, что поверхность грунта под возводимыми зданиями и гибкими фундаментами деформируется в соответствии с расчетной схемой линейно деформируемого слоя грунта, подстилаемого несжимаемым основанием.

Основная трудность при использовании этого метода заключается в том, что не всегда точно удается установить мощность сжимаемого слоя.

В статье рассмотрены некоторые вопросы, связанные с производством в России сталей различных марок и их использованием для строительства металлических конструкций. Ежегодно в нашей стране для строительства расходуется стали обычной прочности а также повышенной и высокой прочности десятки миллионов т/г. Приведены важные для строительных сталей данные по химическим составам и физико-механическим характеристикам. Рассматриваются некоторые особенности, которые необходимо учесть при использовании европейских строительных сталей.

В статье рассматриваются проблемы расчета зданий и сооружений на землетрясения. Исследуются вынужденные колебания линейных и нелинейных систем с одной степенью свободы при нестационарных воздействиях. Приводятся результаты расчета многоэтажного монолитного здания в нелинейной динамической постановке на сейсмическое воздействие. Анализируются расчетные положения норм проектирования зданий и сооружений для строительства в сейсмических районах.

Решение внутренней и внешней задач Лэмба осуществляется с помощью метода конечных элементов. Исследуются плоская и пространственная модели. В качестве источников возмущений во внутренней задаче Лэмба рассматриваются центр расширения, двойная сила без момента, момент и чистый сдвиг. Временные зависимости источников возмущения приняты в виде функции Хэвисайда. Анализируются смещения на свободной границе полупространства или полуплоскости. Исследуется влияние коэффициента Пуассона. Решение осуществляется с помощью явной разностной схемы второго порядка точности.

Приведены формулы для вычисления внутренних усилий в мембранной панели, полученные на основании многовариантных расчетов, проведенных с учетом геометрической нелинейности системы и податливости опорного контура при центральном и эксцентричном креплении мембраны к опорному контуру.

В работе дается теоретическое обоснование возможности применения метода Ритца для расчета балок и плит на упругом основании, где использована идея А.И. Цейтлина для выбора координатных функций, что в ряде случаев дает возможность получить точное решение в форме бесконечного ряда. При решении интегральных уравнений применяются спектральные соотношения метода ортогональных многочленов. Рассматриваются модели упругого основания Винклера. Все расчеты выполнены в традиционной постановке, т.е. без учета влияния касательных напряжений на контакте конструкции с упругим основанием и упругой работой материалов конструкции и основания. Приведены примеры расчета для стержня и кольцевой плиты на основании Винклера.

Во второй части работы дается теоретическое обоснование возможности применения метода Ритца для расчета балок и плит на упругом основании с распределительными свойствами. При решении интегральных уравнений применяются спектральные соотношения метода ортогональных многочленов. Все расчеты выполнены в традиционной постановке, т.е. без учета влияния касательных напряжений на контакте конструкции с упругим основанием и упругой работой материалов конструкции и основания. Приведены примеры расчета для балки на упругой полуплоскости и круглой осесимметрично нагруженной плиты на упругом полупространстве.

В настоящей работе продемонстрировано применение инерционной механической динамической модели грунтовой среды, при ее практической реализации в расчете сооружения. С целью унификации оборудования расчет поэтажных спектров откликов при сейсмических воздействиях выполняется при возможно широком диапазоне вариации грунтов основания сооружения.

ФОРМИРОВАНИЕ РАСЧЕТНЫХ ПАРАМЕТРОВ МОДЕЛЕЙ СВАЙНЫХ ФУНДАМЕНТОВ С УЧЕТОМ ГЕОМЕТРИЧЕСКОЙ ФОРМЫ ПОПЕРЕЧНЫХ СЕЧЕНИЙ И ЭФФЕКТОВ ИХ ВЗАИМОДЕЙСТВИЯ С ГРУНТОВОЙ СРЕДОЙ Страницы 63-71 УДК

Разработана расчетная модель системы сооружение-основание с учетом наиболее существенных факторов, определяющих напряженно-деформированное состояние как конструктивных элементов свайных фундаментов, так и сооружения. Полученные результаты расчетов демонстрируют хорошую сходимость по определению осадки сооружения, выполненных двумя различными методами.

Существует только два типа фундаментов, которые подходят для строительства практически любых зданий: свайный и плитный. Они позволяют возводить здания на грунтах с плохими характеристиками с минимальными затратами. Монолитную плиту в качестве фундамента стоит выбрать по многим причинам, но чтобы она была прочной и надежной необходимо выполнить ее грамотный расчет.

К достоинствам конструкции можно отнести:

  • строительство на грунтах с плохими характеристиками;
  • возможность возведения крупных объектов;
  • возможность самостоятельной заливки;
  • высокая несущая способность;
  • предотвращение локальных деформаций;
  • устойчивость к воздействию сил морозного пучения.

К слабым сторонам такого типа фундаментов относят:

  • нецелесообразность использования на участках с уклоном;
  • большой расход бетона и арматуры;
  • по сравнению с готовыми элементами фундамента, устройство монолитной плиты требует дополнительного времени на набор прочности бетоном;
  • сложный расчет.

Изучение характеристик грунта

Перед тем как приступить к расчету любого типа фундамента определяют характеристики основания под него. К основным и наиболее важным моментам относят:

  • водонасыщенность;
  • несущую способность.

При строительстве крупных объектов перед началом разработки проектной документации выполняют полноценные геологические изыскания, которые включают в себя:

  • бурение скважин;
  • лабораторные исследования;
  • разработку отчета о характеристиках основания.

В отчете предоставляются все значения, полученные в ходе первых двух этапов. Полный комплекс геологических изысканий стоит дорого. При проектировании частного дома в нем чаще всего нет необходимости. Изучение почвы выполняются двумя методами:

  • шурфы;
  • скважины.

Отрывку шурфов выполняют вручную. Для этого лопатой выкапывают яму, глубиной на 50 см ниже предполагаемой отметки подошвы фундамента. Почву изучают по срезу, определяют примерно тип несущего слоя и наличие в нем воды. Если грунт слишком насыщен водой, рекомендуется остановиться на свайных опорах под здание.

Второй вариант изучения характеристик основания под дом выполняют ручным буром. Анализ проводят по кускам почвы на лопастях.

Важно! При проведении мероприятий необходимо выбирать несколько точек для изучения. Они должны располагаться под пятном застройки. Это позволит наиболее тщательно изучить тип почвы.

Определившись с основанием, для него выясняют оптимальное удельное давление на грунт. Величина потребуется в дальнейшем расчете, пример которого представлен далее. Значение принимают по таблице.

*При данном типе грунта основания более экономичным может оказаться ленточный вариант, поэтому нужно рассчитать смету на два типа фундамента и выбрать тот, который будет стоить дешевле.

Расчет толщины плиты

Для различных нагрузок, коэффициент отличается и находится в пределах 1,05-1,4. Точные значения также приведены в таблице. Для фундамента из бетона по монолитной технологии принимают коэффициент 1,3.

Важно! Если уклон кровли составляет более 60 градусов, снеговую нагрузку в расчете не учитывают, поскольку при такой крутизне ската, снег не скапливается на нем.

Общую площадь всех конструкций умножают на массу, приведенную в таблице и коэффициент, после чего, складывая, получают суммарный вес дома без учета фундаментов.

Основная формула для вычислений имеет следующий вид:

где P1 -удельная нагрузка на грунт без учета фундамента, M1 — суммарная нагрузка от дома, полученная при сборе нагрузок, S — площадь плиты из бетона.

где P — табличное значение несущей способности грунта.

где М2 — требуемая масса фундамента (больше этой массы строить фундамент нельзя), S — площадь плиты из бетона.

Следующая формула:

t = (М2/2500)/S,

где t — толщина заливки бетона, а 2500 кг/м 3 — плотность одного кубического метра железобетонного фундамента.

Далее толщина округляется до ближайшей большей и меньшей величины кратной 5 см. После выполняется проверка, при которой разница между расчетным и оптимальным давлением на грунт не должна превышать 25% в любую сторону.

Совет! Если при расчете получается, что толщина слоя бетона превышает 350 мм, рекомендуется рассмотреть такие типы конструкции как ленточный фундамент, столбчатый или плита с ребрами жесткости.

Помимо толщины потребуется подобрать подходящий диаметр армирования, а также выполнить расчет количества арматуры для бетона.

Важно! Если в результате расчета у вас получится толщина плиты более 35 см, это указывает на то, что плитный фундамент избыточен в данных условиях, нужно посчитать ленточный и свайный фундаменты, возможно они окажутся дешевле. Если же толщина вышла меньше 15 см, значит здание слишком тяжелое для данного грунта и нужен точный расчет и геологические исследования.

Пример расчета

Пример предусматривает следующие исходные данные:

  • одноэтажный дом с мансардой размерами в плане 8 м на 10 м;
  • стены выполнены из силикатного кирпича толщиной 380 мм, общая площадь стен (4 наружных высотой 4,5 м) равняется 162 м²;
  • площадь внутренних перегородок из гипсокартона равняется 100 м²;
  • кровля металлическая (четырехскатная, уклон 30ᵒ), площадь равняется 8 м * 10 м/cosα (угол наклона кровли) = 8 м * 10 м/0,87 = 91 м² (также понадобится при вычислении снеговой нагрузки);
  • тип грунта — суглинок, несущая способность = 0,32 кг/см² (получено при геологических изысканиях);
  • перекрытия деревянные, общей площадью 160 м 2 (также понадобится при вычислении полезной нагрузки).

Сбор нагрузок на фундамент выполняется в табличной форме:

Площадь плиты под здание принимается с учетом того, что ширина плиты больше, чем ширина дома на 10 см. S = 810 см * 1010 см = 818100 см² = 81,81 м 2 .

Удельная нагрузка на грунт от дома = 210696 кг/818100 см 2 = 0,26 кг/см 2 .

Δ = 0,32 — 0,26 = 0,06 кг/см 2 .

М = Δ*S = 0,06 кг/см 2 * 818100 см 2 = 49086 кг.

t = (49086 кг/2500 м 3)/81,81 м 2 = 0,24 м = 24 см.

Толщину плиты можно принять 20 см или 25 см.

Выполняем проверку для 20 см:

  1. 0,2 м * 81,81 м 2 =16,36 м 3 — объем плиты;
  2. 16,36 м 3 * 2500 кг/м 3 = 40905 кг — масса плиты;
  3. 251601 кг/ 818100 см 2 = 0,31 кг/см² — фактическое давление на грунт меньше оптимального не более чем на 25 %;
  4. (0,32-0,31)*100%/0,32 = 3% < 25%(максимальная разница).

Проверять фундамент большей толщины уже нет смысла, поскольку требующий меньшего расхода бетона и арматуры размер удовлетворил требованиям. На этом пример расчета толщины завершен. Принимаем плиту толщиной 20 см. Следующим этапом станет расчет армирования и количества арматуры.

Арматура для плитной конструкции подбирается в зависимости от толщины. Если плита с толщиной бетона толщиной 150 см и менее, укладывают одну сетку армирования. Если толщина бетона составляет более 150 мм, необходима укладка арматуры в два слоя (нижний и верхний). Диаметр рабочих стержней 12-16 мм (самый распространенный 14 мм). В качестве вертикальных хомутов устанавливают стержни арматуры с размерами сечения 8-10 мм.

По хорошему плиту нужно рассчитывать и на изгибающие нагрузки, но эти расчеты сложны и выполняются профессионалами на специальном ПО. Чтобы точно понять какой диаметр арматуры и ее шаг необходим в вашем случае, нужно проводить точные вычисления, либо закладывать арматуру с большим запасом по прочности и минимальным шагом, соответственно сильно переплачивая.

Расчет арматуры

Вычисление количества арматуры для рассчитанной выше плиты:

  1. плита толщиной 20 см — две рабочих сетки;
  2. диаметр стержней — 12 мм, шаг — 150 мм;
  3. стержни укладываются так, чтобы обеспечить защитный слой бетона с каждой стороны 0,02-0,03 м. Длина стержней в примере = 8,1 м — 0,02*2 = 8,06 м и 10,06 м;
  4. количество стержней в одном направлении = (8,1 м (длина стороны)/0,15 м (шаг) + 1) *2 (два слоя) = 110 шт;
  5. количество стержней в другом направлении = (10,1 м (длина стороны)/0,15 м (шаг) + 1)*2 (два слоя) = 136 шт;
  6. общая длина стержней = 110*8,06 + 136*10,06 = 886,6 м + 1368,16 = 2254,76 м;
  7. общая масса арматуры 2254,76 м * 0,888 кг/м = 2002, 2 кг.

При покупке необходимо предусмотреть запас 3-5%, чтобы избежать необходимости докупать материал. Также потребуется рассчитать объем бетона. В рассматриваемом случае он равен: 8,1м*10,1м*0,2м = 16,36 м³. Это значение потребуется при заказе бетонной смеси.

Упрощенный расчет толщины фундаментной плиты и количества материалов на нее — несложная задача, которая не потребует большого количества времени. Но выполнение этого этапа позволит обеспечить надежность без перерасхода материалов, что сэкономит нервы и деньги будущего владельца дома.

Важно! Данная статья носит исключительно ознакомительный характер. Для точного расчета фундамента необходимо геологическое исследование. Доверяйте расчет только профессионалам.

Совет! Если вам нужны подрядчики, есть очень удобный сервис по их подбору. Просто отправьте в форме ниже подробное описание работ которые нужно выполнить и к вам на почту придут предложения с ценами от строительных бригад и фирм. Вы сможете посмотреть отзывы о каждой из них и фотографии с примерами работ. Это БЕСПЛАТНО и ни к чему не обязывает.

Современные дома возводят на разных фундаментах. Выбор напрямую зависит от нагрузок, рельефа подобранной местности, структуры и состава самого грунта и, конечно же, климатических условий. Эта статья раскрывает полную информацию о плитном фундаменте, доходчиво отвечает на вопрос, как правильно делать полный расчет, который поможет построить нужное основание.



Особенности

Плиточный тип фундамента состоит из основания постройки, представляющей собой плоскую либо же с ребрами жесткости железобетонную плиту. Конструкция данного фундамента бывает нескольких типов: сборная или монолитная.

Сборным фундаментом называют уложенные готовые плиты, изготовленные на заводе. Плиты укладывают стройтехникой на предварительно подготовленное, то есть выровненное и уплотненное, основание. Здесь могут использоваться аэродромные плиты (ПАГ) либо же дорожные плиты (ПДН, ПД). У такой технологии имеется большой недостаток. Связан он с отсутствующей цельностью, а, как следствие, и с соответствующей невозможностью сопротивления даже самым небольшим передвижениям грунта. Именно по этой причине сборный тип плитного фундамента в основном применяют лишь на поверхностях из скального грунта либо на непучинистых крупнообломочных грунтах для сооружения маленьких построек из дерева в районах, где минимальная глубина промерзания.



А вот монолитный плитный фундамент – это одна целая жесткая железобетонная конструкция, что возводится под площадью самого строения.

По геометрической форме данный тип фундамента бывает нескольких видов.

  • Простой. Когда нижняя сторона фундаментной плитки плоская и ровная.
  • Усиленный. Когда нижняя сторона имеет ребра жесткости, которые расположены в вычисленном особыми расчетами порядке.
  • УШП. Так называют утепленный тип шведских плит, которые относятся к разновидности фундаментных плит усиленного вида. При строительстве применяют уникальную технологию: бетонную смесь заливают в отдельно разработанный заводской тип несъемной опалубки, который и позволяет в дальнейшем формировать на упругом основании, вернее, в нижней ее части и на поверхности сетку заармированных и малых по размеру ребер жесткости. Также у УШП есть система подогрева.

Данная статья рассказывает о простейшем монолитном плитном фундаменте.




Достоинства и минусы, критерии выбора

Первое достоинство – практически совершенная универсальность. Иногда в сети можно повстречать статьи, в которых говорится, что фундаментную плитку строить можно везде.

Даже если строительные работы ведутся на болотистой местности, с плиткой ничего страшного не произойдет: в период сильных холодов она поднимется, а в жаркий период, наоборот, будет опускаться, так сказать, плавать.

Получается своеобразный «бетонный корабль», у которого сверху надстройка из целого дома.

И все же здесь будет справедливым следующее замечание: единственный фундамент, позволяющий производить довольно надежное возведение на посадочных и сильнопучинистых грунтах, включая заболоченный тип почвы, – свайный фундамент. Такой тип фундамента используется, когда у свай вполне хватает собственной длины для закрепления в самых нижних несущих грунтовых слоях.



Морозный тип пучения, включая просадку, во время оттаивания либо проседания фундамента вследствие увлажнения грунтовой поверхности (к примеру, во время подъема грунтовых вод) происходить под поверхностью всей плитки одинаково не могут. В любом случае только одна из сторон сместится больше. Простым примером может стать весеннее оттаивание грунтовой поверхности. Процесс оттаивания будет протекать намного быстрее и с большей интенсивностью на южной стороне дома, нежели на северной. Тем временем плитка будет подвержена огромным нагрузкам, которые, кстати, она не всегда выдерживает. Все это скажется на строении: дом просто может накрениться. Будет не так страшно, если это строение деревянное. А если оно возводилось из кирпича либо блоков, могут появиться трещинки на стенках.

Плитный фундамент позволяет возводить дома даже на самых сложных грунтах, куда относят и среднепучинистый вид почвы, который обладает наименьшей несущей способностью, нежели, к примеру, ленточный грунт. Вот только переоценивать данную возможность не нужно.



Используют ли плитный фундамент во время возведения больших строений? Некоторые утверждают, что на монолитной плите можно выстраивать только самые легкие и вместе с этим недостаточно долговечные строения. Данное утверждение не совсем верное, поскольку при выборе благоприятных условий и верно спроектированном фундаменте с грамотным проведением строительной работы, плитный фундамент способен выдержать даже столичный ЦУМ. Кстати, здание это как раз и строилось на плите.

Слишком высокая цена. Такое мнение почему-то распространено. Практически все уверены, что плитный тип фундамента очень дорогой, дороже существующих видов основания. Также почему-то большинство считает, что стоимость составит около половины от имеющихся затрат на все последующие строительные работы.

При этом никто и никогда никакого сравнительного анализа не проводил. Также почему-то многие не учитывают, что во время строительства дома, например, делать полы не придется. Конечно, здесь говорится о черновой напольной поверхности.

Сложность самой работы. Часто слышится такое утверждение: «Для строительства фундамента плитного типа понадобится опыт квалифицированных работников». И все же, если прикинуть, станет понятным, что такие «мастера» сильно завышают расценки за свою работу. На самом деле только незнание технологии обычно приводит к ошибкам, а наворотить можно и с любым другим фундаментом.

Так с какими именно сложностями можно столкнуться во время работы с плитным фундаментом? При выравнивании площадки? Нет, здесь все также и ничуть не сложнее, нежели при разравнивании заглубленного ленточного фундаментного основания. Может, сложность с гидроизоляцией или с утеплением? Здесь, скорее, лучше совершать данные операции на ровной горизонтальной поверхности, нежели на вертикальных плоскостях.



Может, дело в вязке арматурного каркаса? Опять же нужно сравнить и понять, что проще, к примеру, можно взять арматуру, разложенную на площадке ровной, либо залезть руками в сам ленточный фундамент с его опалубкой. Может, дело в заливке самой бетонной смеси? В данном варианте все зависит не от выбранного фундамента, а, скорее, от особенностей отдельного участка, от того, сможет ли миксер подъехать к строительной площадке или придется мешать бетон вручную.

На самом деле возводить фундаментные плиты – физически непростая задача. Из-за достаточно большой площади возведения данную работу можно назвать нудной, но здесь не говорится, что потребуется помощь квалифицированных строителей. Поэтому с делом таким смогут справиться обычные «рукастые» мужчины. К тому же, если правильно следовать технологии строительства и СНиП столбчатого, плитного и другого фундамента – обязательно все получится.



Вычисления

Каждый нулевой цикл потребует провести расчет, который заключается, прежде всего, в определении толщины самой плиты. Данный выбор нельзя делать приблизительно, поскольку такое непрофессиональное решение вопроса приведет к получению слабенького основания, которое может растрескаться в морозы. Слишком массивное основание глубокого заложения не делают, чтобы не тратить неоправданно лишних денег.

Для самостоятельного строения домов можно использовать расчет, приведенный ниже. И пусть данные расчеты не сравнятся с инженерными, которые проводят в проектных организациях, все же именно эти расчеты помогут в осуществлении качественного заложения фундамента.



Изучить грунт

Следует изучить грунт, находящийся на выбранном участке под застройку.

Для проведения дальнейших расчетов потребуется выбрать определенную толщину для фундаментной плиты с соответствующей массой. Это поможет получить наилучшее удельное давление на имеющийся вид грунта. При превышающихся нагрузках строение обычно начинает «утопать», при минимальных – легкое морозное пучение грунтовой поверхности накренит фундамент. Все это вызовет соответствующие не слишком приятные последствия.

Оптимальное удельное давление для грунтовой поверхности, на которой обычно начинают строительство:

  • мелкий песок либо пылеватый тип песка высокой плотности – 0,35 кг/см³;
  • мелкий песок со средней плотностью – 0,25 кг/см³;
  • супеси в твердом и пластичном виде – 0,5 кг/см³;
  • суглинки пластичные и твердые – 0,35 кг/см³;
  • пластичный сорт глины – 0,25 кг/см³;
  • глина твердая – 0,5 кг/см³.





Общая масса/вес дома

Основываясь на разработанном проекте будущего строения, можно определить, какой у дома будет общая масса/вес.

Приближенное значение удельной массы каждого конструктивного элемента:

  • кирпичная стена со 120-миллиметровой толщиной, то есть в полкирпича, – до 250 кг/м²;
  • стена из газобетона либо 300-миллиметровых пенобетонных блоков марки D600 – 180 кг/м²;
  • стена из бревен (диаметр 240 мм) – 135 кг/м²;
  • 150-миллиметровая стена из бруса – 120 кг/м²;
  • 150-миллиметровая каркасная стена (утеплитель обязателен) – 50 кг/м²;
  • чердачная из деревянных балок с обязательным утеплением, плотностью достигающей 200 кг/м³, – 150 кг/м²;
  • пустотная плита из бетона – 350 кг/м²;
  • межэтажная либо цокольная из деревянных балок, утепленная, плотность достигает 200 кг/м³ – 100 кг/м²;


  • монолитное перекрытие из железобетона – 500 кг/м²;
  • эксплуатационная нагрузка для перекрытия межэтажного и цокольного – 210 кг/м²;
  • с кровлей, изготовленной из стали листовой, профнастила или металлочерепицы, – 30 кг/м²;
  • эксплуатационная нагрузка для перекрытия чердачного – 105 кг/м²;
  • с кровлей двухслойной из рубероида – 40 кг/м²;
  • с кровлей керамической черепицы – 80 кг/м²;
  • с шиферной – 50 кг/м²;
  • снеговой тип нагрузки, применяемый к средней полосе российской территории, – 100 кг/м²;
  • снеговой тип нагрузки для северных регионов – 190 кг/м²;
  • снеговой тип нагрузки для южной части – 50 кг/м².

В книге рассматриваются приближенные методы расчета балок и плит, расположенных на упругом основании, за пределом упругости. Кратко изложены основные принципы теории предельного равновесия, рассмотрена задача определения предельной несущей способности балки на упругом основании при различной нагрузке. Показано определение предельной нагрузки для рам и ростверков с учетом влияния упругого основания. Дано решение задач для предварительно напряженной балки. Рассмотрено влияние двухслойного основания. Решены задачи, относящиеся к плитам, расположенным на упругом основании, при сосредоточенной нагрузке в центре, на краю и в углу плиты. Сделан расчет предварительно-напряженной и трехслойной плиты. В конце работы приводятся экспериментальные данные, относящиеся к балкам и плитам, а также сделано сравнение с теоретическими результатами. Книга предназначена для инженеров-проектировщиков и может быть полезна студентам старших курсов строительных вузов.

Предисловие к первому изданию
Предисловие ко второму изданию
Введение

Глава 1. Общие принципы расчета
1.1. Условия перехода балок на упругом основании за предел упругости
1.2. Предельное равновесие для изгибаемых элементов
1.3. Общий случай
1.4. Образование пластических областей в основании
1.5. Условия создания фундаментов наименьшего веса

Глава 2. Балка на упругом полупространстве
2.1. Наибольшая нагрузка в упругой стадии
2.2. Распределение реакций за пределом упругости
2.3. Величина предельной нагрузки
2.4. Две сосредоточенные силы
2.5. Три сосредоточенные силы
2.6. Равномерно распределенная нагрузка
2.7. Балка переменного сечения
2.8. Ростверк из двух перекрестных балок
2.9. Трехслойная балка
2.10. Сосредоточенная сила, приложенная несимметрично
2.11. Сосредоточенная сила на краю балки
2.12. Предварительно-напряженная балка
2.13. Предварительно-напряженная кольцевая балка
2.14. Бесконечно длинная балка
2.15. Простая рама
2.16. Сложная рама

Глава 3. Балка на двухслойном основании
3.1. Наибольшая нагрузка в упругой стадии
3.2. Определение предельной нагрузки
3.3. Применение групповых эпюр
3.4. Предварительно - напряженная балка на слое конечной толщины
3.5. Ростверки на упругом слое

Глава 4. Балка на слое переменной жесткости
4.1. Составление дифференциальных уравнений
4.2. Учет влияния собственного веса
4.3. Выбор расчетной схемы предельного состояния
4.4. Пример определения предельной силы
4.5. Расчет фермы слоистого перекрытия
4.6. Расчет слоистой рамы
4.7. Балки на нелинейном основании
4.8. Пример расчета балки на нелинейном основании
4.9. Регулирование реакций основания
4.10. Определение оптимальной жесткости для балки

Глава 5. Расчет плит
5.1. Приближенное решение для бесконечной плиты
5.2. Бесконечно жесткая квадратная плита
5.3. Нагрузка в углу плиты
5.4. Квадратная плита на двухслойном основании
5.5. Предварительно-напряженная плита
5.6. Влияние местных и общих деформаций плиты за пределом упругости
5.7. Трехслойная плита
5.8. Нагрузка на краю плиты
5.9. Сборные плиты

Глава 6. Применение ЭВМ для определения предельного состояния основания
6.1. Метод конечных элементов
6.2. Предельная нагрузка высокой фундаментной балки
6.3. Определение пластических областей в основании
6.4. Высокая фундаментная балка на упругопластическом основании
6.5. Предельная нагрузка балки, определяемая из условия образования пластических областей в основании
6.6. Использование балочных конечных элементов
6.7. Вычисление предельных смещений и нагрузок

Глава 7. Предельные осадки каркасных многоэтажных зданий
7.1. Основные расчетные положения
7.2. Метод решения задачи и составление общих уравнений
7.3. Особенности расчета, зависящие от конструкции фундамента (сплошные плиты, ленточные фундаменты, отдельные столбы)
7.4. Примеры расчета

Глава 8. Результаты испытаний
8.1. Рамы, ростверки и плиты
8.2. Сравнение теоретических и экспериментальных данных
8.3. Модуль деформации основания
Список литературы

Введение

Балки и плиты на упругом основании используются главным образом как расчетные схемы для фундаментов, которые являются основными элементами, обеспечивающими общую прочность и надежность сооружения.

К расчету фундамента, как правило, предъявляются повышенные требования в отношении его состояния в процессе эксплуатации сооружений. Небольшие отклонения от установленных величин в области деформаций или напряжений, которые часто имеются у других конструктивных элементов, для фундамента оказываются совершенно недопустимыми.

Это по существу правильное положение иногда приводит к тому, что фундаменты проектируются с излишним запасом прочности и оказываются неэкономичными.

Для оценки величины несущей способности фундамента необходимо изучить распределение сил в таких конструкциях за пределом упругости, только тогда можно будет установить правильно те наиболее рациональные размеры, при которых обеспечивается необходимая надежность сооружения при его минимальной стоимости.

Трудность задачи о расчете балок на упругом основании за пределом упругости состоит в том, что нельзя непосредственно, без специальных приемов, применить общий метод расчета конструкций по предельному равновесию.

Метод предельного равновесия, созданный в результате работ наших отечественных ученых профессоров В. М. Келдыша, Н.С. Стрелецкого, А.А. Гвоздева, В.В. Соколовского, Н.И. Безухова, А.А. Чираса, А.Р. Ржаницына, А. М. Овечкина и многих других, получил всеобщее признание и широко применяется на практике. В иностранной литературе этот метод также используется и освещается в работах Б.Г. Нила, Ф.Г. Ходжа, Р. Хилла, М. Р. Горна, Ф. Блейха, В. Прагера, И. Гийона и др.; часть этих трудов переведена на русский язык.