Операции наращения и дисконтирования. Логика операций дисконтирования, наращения капитала

Простейшим примером финансовой сделки является однократное предоставление в долг некоторой суммы (PV) с условием, что через какое-то время (t) будет возвращена большая сумма (FV). При этом FV называется будущей стоимостью, а PV – настоящей стоимостью.

Будущая стоимость денег денег (FV) – это сумма инвестированных в настоящий момент денежных средств, в которую они превратятся через определенный период времени с учетом определенной ставки процента.

Настоящая стоимость денег (PV) – это сумма будущих денежных средств, приведенных с учетом определенной ставки процента (процентной ставки) к настоящему периоду времени.

Результативность приведенной сделки может быть охарактеризована:

· или с помощью абсолютного показателя (FV – PV), но как было уже сказано, абсолютные показатели не подходят для подобной оценки ввиду их несопоставимости во временном аспекте;

· или расчетом относительного показателя, специального коэффициента – ставки.

Ставка рассчитывается как отношение приращения исходной суммы к базовой величине, в качестве которой можно брать либо PV, либо FV. Таким образом, ставка рассчитывается по одной из двух формул:

· темп прироста

· темп снижения

В финансовых вычислениях первый показатель имеет еще названия «процентная ставка», «процент», «ставка процента», «норма прибыли», «доходность», а второй – «учетная ставка», «дисконт».

Обе ставки взаимосвязаны, т.е. зная одну ставку, можно рассчитать другую:

Оба показателя могут выражаться либо в долях единицы, либо в процентах. Различие в формулах состоит в том, какая величина берется за базу сравнения:

· в формуле процентной ставки (1.1) за базу сравнения берется исходная сумма;

· в формуле учетной ставки (1.2) – возвращаемая сумма.

Очевидно, что , а степень расхождения зависит от уровня процентных ставок на конкретный момент времени. Например:

· если i t = 8 %, то d t = 7,4 %, т.е.


расхождение сравнительно невелико;

· если i t = 80 %, то d t = 44,4 %, т.е. ставки существенно различаются по величине.

Как мы видим, при разумных значениях ставок расхождения между процентной и дисконтной ставками относительно невелики и потому в прогнозных расчетах, например, при оценке инвестиционных проектов может быть использована любая из них.

Итак, в любой простейшей сделке всегда присутствуют три величины, две из которых заданы, а одна является искомой.

Процесс, в котором заданы исходная сумма и процентная ставка называется процессом наращения , а процесс, в котором заданы ожидаемая в будущем к получению (возвращаемая) сумма и коэффициент дисконтирования, называется процессом дисконтирования . В первом случае речь идет о движении денежного потока от настоящего к будущему, во втором – о движении денежного потока от будущего к настоящему (рисунок 1.1).

В качестве коэффициента дисконтирования может использоваться либо процентная ставка (математическое дисконтирование), либо учетная ставка (банковское дисконтирование).

Экономический смысл операции наращения (формула 1.1.) состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Поскольку из формулы (1.1) получается:

то видно, что время генерирует деньги. Величина FV показывает будущую стоимость «сегодняшней» величины PV при заданном уровне доходности.

На практике доходность является величиной непостоянной, зависящей, главным образом, от степени риска, ассоциированного с данным видом бизнеса. Связь здесь прямо пропорциональная: чем рискованнее бизнес, тем выше значение доходности.

Экономический смысл дисконтирования заключается во временном упорядочении денежных потоков различных временных периодов. Коэффициент дисконтирования показывает, какой ежегодный процент возврата хочет (или может) иметь инвестор на инвестируемый им капитал. В этом случае искомая величина PV показывает как бы текущую, сегодняшнюю стоимость будущей величины FV. Например, предприятие получило кредит на один год в размере 5 млн. руб. с условием возврата 10 млн. руб. в этом случае процентная ставка равна 100 %, а дисконт – 50 %.

Инвестиционном анализе

Логика построения основных алгоритмов достаточно понятна и основана на следующей идее. Простейшим видом финансовой сделки является однократное предоставление в долг некоторой суммы (PV) с условием, что через некоторое время t будет возвращена сумма FV. Эффективность подобной сделки может быть охарактеризована одной из двух величин:

темп прироста:

темп снижения:

.

В финансовых расчётах первый показатель () имеет ещё название «процент», «рост», «ставка процента», «норма доходности», а второй – «дисконт», «ставка дисконтирования», «коэффициент дисконтирования». Очевидно, что обе ставки взаимосвязаны:

Оба показателя могут выражаться либо в долях единицы, либо в процентах. Различие в этих формулах состоит в том, какая величина берётся за базу сравнения: в формуле (8.2) – исходная сумма, в формуле (8.3) – возвращаемая сумма.

Итак, в любой простейшей финансовой сделке всегда присутствуют три величины, две из которых заданы, а одна является искомой.

Процесс, в котором заданы исходная сумма и процентная ставка, в финансовых вычислениях называется процессом наращения или компаундинга. Процесс, в котором задана возвращаемая сумма и коэффициент дисконти-рования, называется процессом дисконтирования. В первом случае речь идёт о движении денежного потока от настоящего к будущему, во втором – о движении от будущего к настоящему (см. рис. 19).

Экономический смысл финансовой операции, задаваемой формулой (8.2), состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции.

Поскольку из формулы (8.2)

,

и , то можно наглядно представить, что время генерирует деньги.

Будущее

Наращивание

Процентная ставка r(t)
Возвращаемая сумма (FV)
Исходная сумма (PV)
Настоящее

Возвращаемая сумма (FV)
Приведенная сумма (исходная) (PV)
Дисконтирование
Дисконтная ставка

Рис. 19. Логика финансовых операций

На практике норма доходности является величиной непостоянной, зависящей главным образом от степени риска, ассоциируемого с данным видом бизнеса, в который инвестирован капитал (чем выше степень риска, тем выше норма доходности). К примеру, наименее рискованными являются вложения в государственные ценные бумаги или в Госбанк, однако норма доходности в этом случае относительно невысока.

Коэффициент дисконтирования показывает, какой ежегодный процент возврата хочет (или может) иметь инвестор на инвестируемый им капитал. При этом искомая величина (PV) показывает как бы текущую, «сегодняшнюю» стоимость будущей величины (FV).

Дисконт, связанный с суммовыми величинами (формула 8.3), исполь-зуется главным образом в операциях по учёту векселей банком, т. е. в том случае, если владелец векселя на сумму FV предъявляет его банку, который соглашается учесть его, т. е. купить, удерживая в свою пользу часть вексельной суммы, нередко также называемой дисконтом. В этом случае банк предлагает владельцу сумму (PV), исчисляемую исходя из объявленной банком ставки дисконтирования (). Расчёт этой суммы ведётся по формуле, вытекающей из формулы 8.3:

;
.

К примеру, векселедержатель предъявил для учёта вексель на сумму 10 тыс. грн. со сроком погашения 15.04.2000 г. Вексель предъявлен 31.03.2000г. Банк согласился учесть вексель с дисконтом в 65 % годовых. Тогда дисконтная ставка на 15 дней составит (15/360)·0.65=0,027083. Следовательно, сумма, которую векселедержатель может получить от банка, рассчитывается по формуле (8.4):

PV=10 · (1 – 0,027083) = 9,72917 тыс. грн.

Комиссионные, удерживаемые банком в свою пользу за предоставленную услугу, в данном примере составили разницу между FV и PV или 270 грн. 83 коп.

FV–PV=10–9,72917=0,27083 тыс. грн.

Стандартным временным интервалом в финансовых операциях является 1 год. Существует две основные схемы наращения капитала:

схема простых процентов;

схема сложных процентов.

Если исходный инвестируемый капитал равен P, а требуемая норма доходности за 1 год – r (как коэффициент в долях единицы от начальной суммы Р), тогда считается, что инвестиция сделана на условиях простого процента, если инвестированный капитал ежегодно увеличивается на величину (P·r). Таким образом, размер инвестиционного капитала через n лет Pn будет равен:

Если очередной годовой доход исчисляется не с исходной величины инвестированного капитала, а с общей суммы, включающей также и ранее начисленные и не востребованные инвестором проценты, то в этом случае инвестиция сделана на условиях сложного процента. В этом случае размер инвестированного капитала будет равен:

к концу первого, второго и n-ного года:

.

Инвестирование на условиях сложного процента более выгодно, т. к.

или Pn на условиях простого процента меньше Pn на условиях сложного процента при n > 1.

В первом случае, при применении простого процента, доходы, по мере их начисления, целесообразно снимать для потребления или новой инвестиции, а во втором случае, при использовании сложного процента, инвестированный капитал непрерывно генерирует доходы и постоянно возрастает и не возникает объективная необходимость изъятия начисленных процентов для использова-ния в других инвестиционных проектах.

Формула 8.6 является базовой в финансовых вычислениях. Для удобства пользования ею значения факторного множителя (FM), обеспечивающего наращение стоимости, табулированы для различных значений r и n. При пользовании такими таблицами формула 8.6 имеет вид:

,

где – факторный множитель, экономический смысл кото-рого состоит в следующем: он показывает, чему будет равна одна денежная единица (1 гривня, 1 доллар и т. п.) через n периодов при заданной процентной ставке r на каждый из этих периодов.

Схема простых процентов используется в практике банковских расчётов при начислении процентов по краткосрочным ссудам (со сроком погашения до 1 года).

К примеру, выдана ссуда в размере 10 тыс. грн. на один месяц (30 дней) под 130 % годовых. Тогда размер платежа к погашению составит:

Норма доходности в долях единицы составит на один год (360 дней). На 30 дней норма доходности должна составить ,

где – норма доходности на один день:

Тыс. грн.

В практике вложений нередко используются внутригодовые процентные начисления, т. е. при выплате дивидендов на вложенный капитал нередко оговаривается не только величина годового процента, но и частота выплаты в течение года. В этом случае расчет ведётся по формуле сложных процентов по подинтервалам и по ставке, равной пропорциональной доле исходной годовой ставки:

,

где m – количество начислений в году,

n – период реализации инвестиций, лет.

К примеру, в банковский депозит вложены деньги в сумме 10 тыс. грн. на 2 года с полугодовыми начислениями процентов под 20 % годовых. В этом случае начисление процентов производится 4 раза (2 раза в год в течение 2 лет) по ставке 10 % на полугодие (20 % : 2).

Если воспользоваться формулой 8.7, то сумма к концу двухлетнего периода составила бы:

тыс. грн.,

где 0,20/2 – норма доходности в долях единицы в расчёте на одно полугодие.

Можно сделать вывод, что чем чаще начисляются проценты, тем большая будет итоговая сумма при использовании формулы сложных процентов (т. е. в этом случае 12 % годовых не эквивалентны 1 % в месяц, а несколько больше при помесячном их начислении по формуле сложных процентов).

Наращение суммы к исходной инвестиции (вложению) происходит различными темпами в зависимости от частоты начисления процентов, причём с возрастанием частоты накопления сумма увеличивается.

Максимально возможное наращение реализуется при бесконечном дроблении годового интервала.

,

(это важнейшая постоянная математического анализа, относящаяся к группе замечательных пределов – трансцендентное число e = 2,718281, одновременно является основанием натурального логарифма).

Тогда:

.

В пределах одного года при непрерывном начислении процентов можно использовать формулу (n = 1):

Возможности использования в контрактах на инвестиции (вложения) различных схем начисления процентов определяют объективную потребность и необходимость сравнительного анализа эффективности таких вложений с использованием некого универсального показателя для любой из схем начисления.

В сравнительном анализе эффективности вложений используют показатель эффективной годовой процентной ставки , обеспечивающий переход от P к Pn при заданных значениях этих показателей.

В рамках одного года, исходя из формулы 8.7, такой переход реализуется зависимостью:

.

Тогда по определению эффективной процентной ставки:

Приравняв эти формулы, получим:

.

Можно сделать вывод, что эффективная годовая ставка зависит от количества внутригодовых начислений, с ростом которых она также увеличивается.

К примеру, у частного предпринимателя есть возможность получить ссуду на разных условиях:

1) на условиях ежеквартального начисления процентов из расчёта 80% годовых;

2) на условиях полугодового начисления процентов из расчёта 85 % годовых.

Чтобы выяснить, какой вариант более предпочтителен, необходимо рассчитать относительные расходы предпринимателя по обслуживанию ссуды, величина которых оценивается эффективной годовой процентной ставкой. Чем она ниже, тем более предпочтителен вариант (относительные расходы самые маленькие):

;

.

Из расчётов следует, что второй вариант является более предпочтительным.

У предпринимателя всегда есть выбор, куда вложить свободные денежные средства. Такой выбор всегда является выбором того вида бизнеса, вложение средств в который принесёт максимальный доход. При оценке целесообразности таких вложений исходят из того, явится ли такое вложение более прибыльным (при допустимом уровне риска), чем вложения в государственные ценные бумаги, или наоборот, т. е. анализируют будущие доходы при минимальном («безопасном») уровне доходности.

Для этого используют несложные математические методы, основная идея которых заключается в оценке будущих поступлений P n (в виде прибыли, процентов, дивидендов) с позиции текущего момента.

В финансовой практике часто приходится решать задачи, обратные опре­делению наращённой суммы: по уже известной наращённой сумме (FV) следует определить неизвестную первоначальную сумму долга (PV).

Такие ситуации возникают при разработке условий финансовой сделки, или когда проценты с наращённой суммы удерживаются непосредственно при выдаче ссуды.

Процесс начисления и удержания процентов вперёд, до наступ­ления срока погашения долга, называют учётом, а сами проценты в виде разно­сти наращённой и первоначальной сумм долга дисконтом (discount)".

Термин дисконтирование в широком смысле означает определение зна­чения стоимостной величины на некоторый момент времени при условии, что в будущем она составит заданную величину.

Рисунок 6 - Логика финансовой операции дисконтирования


Не редко такой расчёт называют приведением стоимостного показателя к заданному моменту времени, а величину РУ называют приведённой (современной или текущей) величиной FV. Таким образом, дисконтирование - приведение буду­
щих денег к текущему моменту времени, и при этом не имеет значения, имела ли место в действительности данная финансовая операция или нет, а также независимо от того, можно ли считать дисконтируемую сумму буквально наращённой.

Именно дисконтирование позволяет учитывать в стоимостных расчётах фактор времени, поскольку даёт сегодняшнюю оценку суммы, которая будет получена в будущем. Привести стоимость денег можно к любому моменту вре­мени, а не обязательно к началу финансовой операции.

Исходя из методики начисления процентов, применяют два вида дискон­тирования:

Математическое дисконтирование по процентной ставке;

Банковский учёт по учётной ставке.

Различие в ставке процентов и учётной ставке заключается в различии базы для начислений процентов:

В процентной ставке в качестве базы берётся первоначальная сумма

(1.29)

В учётной ставке за базу принимается наращённая сумма долга

РУ-РУ Л. (0°)

Проценты, начисленные по ставке процентов, называются антисипатив- ными, а по учётной ставке - декурсивными.

Учётная ставка более жёстко отражает временной фактор, чем процент­ная ставка. Если сравнить между собой математическое и банковское дискон­тирование в случае, когда процентная и учётная ставка равны по своей величине, то видно, что приведённая величина по процентной ставке больше приведённой величины по учётной ставке.

Математическое дисконтирование - определение первоначальной сум­мы долга, которая при начислении процентов по заданной величине процент­ной ставки (/), позволит к концу срока получить указанную наращённую сумму для простых процентов:

РУ =---------- =---------- = РУ х (1 + пх /)-1 = РУ х кЛ, (1.31)

1 + п х I 1 + п х I

где кд - дисконтный множитель (коэффициент приведения) для простых про­центов.

Дисконтный множитель показывает, какую долю составляет первона­чальная сумма долга в величине наращённой суммы. Поскольку дисконтный множитель (множитель приведения) зависит от двух аргументов (процентной ставки и срока ссуды), то его значения легко табулируются, что облегчает фи­нансовые расчёты.

Пример. Через 150 дней с момента подписания контракта необходимо уплатить 310 тыс. руб., исходя из 8% годовых и временной базы 360 дней. Определить первоначальную сумму долга. Решение:

Поскольку срок ссуды менее года, то используем формулу простых процентов:

РУ = 310000 х 1 / (1 + 150 / 360 х 0,08) = 300 000 руб.

РУ = 310000 х 0,9677419 = 300 000 руб. Таким образом, первоначальная сумма долга составила 300 тыс. руб., а проценты за 150 дней - 10 тыс. руб. Для сложных процентов -

РУ = ГУ х(1 + 0-п = ГУ хка, (1.32)

где кд - дисконтный множитель для сложных процентов.

Если начисление процентов производится т раз в год, то формула примет


РУ = ГУ х
(1.33)

Пример. Через два года фирме потребуются деньги в размере 30 млн руб., какую сумму необходимо сегодня поместить в банк, начисляющий 25% годовых, чтобы через 2 года получить требуемую сумму? Решение:

Поскольку срок финансовой операции составляет более года, что исполь­зуем формулу приведения для сложных процентов:

РУ = 30000000 х 1 / (1 + 0,25)2 = 19 200 000 руб.

РУ = 30000000 х 0,6400000 = 19 200 000 руб.

Таким образом, фирме следует разместить на счёте 19 200 000 руб. под 25% годовых, чтобы через два года получить желаемые 30 000 000 руб.

Современная величина и процентная ставка, по которой проводится дис­контирование, находятся в обратной зависимости: чем выше процентная ставка, тем при прочих равных условиях меньше современная величина.

В той же обратной зависимости находятся современная величина и срок финансовой операции: чем выше срок финансовой операции, тем меньше при прочих равных условиях современная величина.

Банковский учёт - второй вид дисконтирования, при котором исходя из известной суммы в будущем, определяют сумму в данный момент времени, удерживая дисконт.

Операция учёта (учёт векселей) заключается в том, что банк или другое финансовое учреждение до наступления платежа по векселю покупает его у предъявителя по цене ниже суммы векселя, т. е. приобретает его с дисконтом.

Сумма, которую получает векселедержатель при досрочном учёте векселя, называется дисконтированной величиной векселя. При этом банк удерживает в свою пользу проценты (дисконт) от суммы векселя за время, оставшееся до срока его погашения. Подобным образом (с дисконтом) государство продаёт большинство своих ценных бумаг.

Для расчёта дисконта используется учётная ставка:

Б = РУ - РУ = РУ х п х Л = РУ х ^ х Л, (1.34)

где п - продолжительность срока в годах от момента учёта до даты выплаты известной суммы в будущем.

РУ = РУ - РУх п х Л = РУ х (1 - п х Л), (1.35)

где (1 - п х ё) - дисконтный множитель.

Очевидно, что чем выше значение учётной ставки, тем больше дисконт. Дисконтирование по простой учётной ставке чаще всего производится по французской практике начисления процентов, т. е. когда временная база при­нимается за 360 дней, а число дней в периоде берётся точным.

Пример. Вексель выдан на 5 000 руб. с уплатой 17 ноября, а владелец учёл его в банке 19 августа по учётной ставке 8%. Определить сумму, получен­ную предъявителем векселя и доход банка при реализации дисконта.

Для определения суммы при учёте векселя рассчитываем число дней, оставшихся до погашения обязательств:

Отсюда, определяемая сумма:

РУ = 5000 х (1 - 90/360 х 0,08) = 4 900 руб.

Тогда дисконт составит:

Б = РУ - РУ = 5000 - 4900 = 100 руб.

Б = 5000 х 90/360 х 0,08 = 100 руб.

Следовательно, предъявитель векселя получит сумму 4900 руб., а банк при наступлении срока векселя реализует дисконт в размере 100 руб.

По сложной учётной ставке текущая величина составит:

РУ = РУ х (1 - !)п (1.36)

При использовании сложной учётной ставки процесс дисконтирования происходит с прогрессирующим замедлением, т. к. учётная ставка каждый раз применяется к уменьшаемой на величину дисконта величине.

Пример. Определить величину суммы, выдаваемую заёмщику, если он обязуется вернуть её через два года в размере 55 тыс. руб. Банк определяет свой доход с использованием годовой учётной ставки 30%.

Используя формулу дисконтирования по сложной учётной ставке, опре­деляем:

РУ = 55000 х (1 - 0,3)2 = 26 950 руб.

Заёмщик может получить ссуду в размере 26 950 руб., а через два года вернёт 55 тыс. руб.

Объединение платежей можно производить и на основе учётной ставки, например, при консолидировании векселей. В этом случае, сумма консолиди­рованного платежа рассчитывается по следующей формуле:

РУб =1 РУ} х (1 - с! х ^)Л (1.37)

где ^ - интервал времени между сроками векселей.

Пример. Вексель на сумму 10 тыс. руб. со сроком погашения 10.06, а также вексель на сумму 20 тыс. руб. со сроком погашения 01.08 заменяются одним с продлением срока до 01.10. При объединении векселей применяется учётная ставка 25%. Определить сумму консолидированного векселя.

Для использования формулы консолидированного платежа необходимо определить срок пролонгации векселей:

ї1 = 21 (июнь) + 31 (июль) + 31 (август) + + 30 (сентябрь) + 1 (октябрь) - 1 = 113 дней, = 31 (август) + 30 (сентябрь) + 1(октябрь) - 1 = 61 день.

Тогда, сумма консолидированного векселя будет равна: ¥У0 = 10000 х (1 - 113/360 х 0,25)-1 + 20000 х (1 - 61/360 х 0,25)-1 = 31 736 руб.

Таким образом, сумма консолидированного векселя с датой погашения 01.10 составит 31 736 руб.

В том случае, когда учёту подлежит долговое обязательство, по которому предусматривается начисление процентов, происходит совмещение начисления процентов по процентной ставке и дисконтирования по учётной ставке:

РУ2 = РУ1 х (1 + п х і) х (1 - п2 х й), (1.38)

где РУ1 - первоначальная сумма долга;

РУ2 - сумма, получаемая при учёте обязательства;

п1 - общий срок платёжного обязательства;

п2 - срок от момента учёта до погашения.

Пример. Обязательство уплатить через 100 дней сумму долга в размере 50 тыс. руб. с начисляемыми на неё точными процентами по ставке 40%, было учтено за 25 дней до срока погашения по учётной ставке 25%. Определить сум­му, полученную при учёте обязательства.

Следует обратить внимание на различие временных баз, используемых при наращении и учёте:

РУ2 = 50000 х (1 + 100/365 х 0,4) х (1 - 25/360 х 0,25) = 54 516 руб.

Следовательно, сумма, получаемая при учёте данного обязательства, со­ставит 54 516 руб.

1.1. Операции наращивания и дисконтирования.

Стоимость определенной суммы денег это функция от времени возникновения денежных доходов или расходов.

Тезис «время-деньги» всем хорошо известен.

Временная стоимость денег обусловлена двумя факторами:

    Обесценение денежной наличности с течением времени в результате инфляции.

    Обращение капитала (денежных средств).

Простейшим видом финансовой сделки является однократное представление в долг некоторой суммыPV (present value) с условием, что через какое-то время t будет возвращена большая сумма FV (future value). Результат такой сделки оценивается с помощью специального коэффициента, который называется ставкой .

Этот показатель рассчитывается отношением приращения исходной суммы к базовой величине, в качестве которой можно брать либо PV либо FV. Таким образом, ставка рассчитывается по одной из двух формул.

Темпы прироста

Темпы снижения

В финансовых вычислениях первый показатель называется:

    «процентная ставка»;

    «процент»;

  • «ставка процента»;

    «норма прибыли»;

    «доходность».

Второй показатель называется:

    «учетная ставка»;

    «дисконт»;

    «ставка дисконта»;

    «коэффициент дисконтирования».

Обе ставки взаимосвязаны:

Оба показателя могут выражаться либо в долях единицы, либо в процентах.

Очевидно, что . Степень расхождения зависит от уровня процентных ставок, имеющих место в конкретный момент времени. Так, если,, т. е. расхождение сравнительно невелико; если, то, т. е. ставки существенно различаются по величине.

    Как правило, при оценке инвестиционных проектов имеют дело с процентной ставкой .

В любой простейшей финансовой сделке всегда присутствуют три величины , из которых две заданы, а одна является искомой.

Если заданы исходная сумма PV и процентная ставка , то финансовая сделка характеризуетпроцесс наращивания .

Если заданы сумма, ожидаемая к получению в будущем (возвращаемая сумма) FV и ставка дисконта , то финансовая сделка характеризуетпроцесс дисконтирования , т. е. приведения к настоящему моменту времени (рис. 1).

Рис.1. Логика финансовых операций.

В качестве коэффициента дисконтирования может использоваться либо процентная ставка (математическое дисконтирование) , либо учетная ставка (банковское дисконтирование).

Из формулы (1) следует:

,

и , т. е. Мы видим, что время «генерирует деньги».

Выводы:

    На практике доходность является величиной непостоянной, зависящей, главным образом, от степени риска. Чем рискованнее бизнес, тем выше значение доходности. Наименее рискованны вложения в государственные ценные бумаги или государственный банк, однако доходность операции в этом случае относительно невелика.

    Величина FV показывает будущую стоимость «сегодняшней» величины PV при заданном уровне доходности.

    Экономический смысл дисконтирования заключается во временном упорядочении денежных потоков различных временных периодов.

    Коэффициент дисконтирования показывает, какой ежегодный процент возврата хочет (или может) иметь инвестор на инвестируемый им капитал. В этом случае искомая величина PV показывает текущую, «сегодняшнюю» стоимость будущей величины FV.