Приведенная система вычетов по mod 9. Определение и свойства вычетов

Совокупность чисел, сравнимых с a по модулю m называется классом чисел по модулю m (или классом эквивалентности). Все числа одного класса имеют вид mt + r при фиксированном r .

При заданном m , r может принимать значения от 0 до m -1, т.е. всего существует m классов чисел по модулю m , и любое целое число попадет в один из классов по модулю m . Таким образом,

Z = m m … [m -1] m , где [r ] m ={x Z: x r (mod m )}

Любое число класса [r ] m называется вычетом по модулю m по отношению ко всем числам того же класса. Число, равное остатку r , называется наименьшим неотрицательным вычетом .

Вычет, наименьший по абсолютной величине, называется абсолютно наименьшим вычетом .

Пример

Возьмем модуль m =5. И пусть a =8. Разделим a на m с остатком:

Остаток r =3. Значит 8 5 , и наименьший неотрицательный вычет числа 8 по модулю 5 есть 3.

Абсолютно наименьший вычет можно отыскать, вычислив r-m=3-5=-2, и сравнив абсолютные величины |-2| и |3|. |-2|<|3|, значит -2 – абсолютно наименьший вычет числа 8 по модулю 5.

Взяв от каждого класса по одному вычету, получим полную систему вычетов по модулю m . Если все эти числа будут являться наименьшими неотрицательными вычетами по модулю m , то такая система вычетов называется полной системой наименьших неотрицательных вычетов , и обозначается Z m .

{0; 1;…; m -1} = Z m – полная система наименьших неотрицательных вычетов.

{– ;…; 0;…; } (если m –нечетное число) ;

{ - ,…,-1, 0, 1,…, } или {- ,…, -1, 0, 1,…, } (если m четное число) – полная система абсолютно наименьших вычетов.

Пример

Если m =11, то полная система наименьших неотрицательных вычетов есть {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10}, а полная система абсолютно наименьших вычетов – {–5; –4; –3; –2; –1; 0; 1; 2; 3; 4; 5}.

Утверждение 1

Любые m чисел, попарно несравнимые по модулю m , образуют полную систему вычетов по этому модулю.

Доказательство:

Действительно, в силу несравнимости эти числа принадлежат к разным классам, а т.к. их m штук, то в каждый существующий класс попадает ровно одно число.

Утверждение 2

Если (a , m ) = 1, и x пробегает полную систему вычетов по модулю m , то ax +b , где b – любое число из Z, тоже пробегает полную систему вычетов по модулю m .

Доказательство:

Чисел ax +b будет ровно m штук. Остается доказать, что любые 2 числа ax 1 +b и ax 2 +b несравнимы по модулю m , если x 1 x 2 (mod m )

Доказательство от противного. Предположим, что ax 1 +b ax 2 +b (mod m ) в силу 4-го св-ва сравнений, ax 1 ≡ ax 2 (mod m ) в силу св-ва сравнений №9 и того, что (a , m ) = 1, имеем x 1 ≡ x 2 (mod m ). Получили противоречие с тем, что x 1 x 2 (mod m ). Следовательно, предположение неверно, а значит верно обратное. То есть ax 1 +b и ax 2 +b несравнимы по модулю m , если x 1 x 2 (mod m ), что и требовалось доказать.

Определение. Числа образуют полную систему вычетов по модулю , если любое целое число сравнимо по модулю с одним и только одним из этих чисел.

Любая полная система вычетов по модулю состоит из чисел, которые попарно не сравнимы по модулю .

Теорема. Пусть - полная система вычетов по модулю . Пусть - целое число, взаимно простое с . Тогда - тоже полная система вычетов по модулю .

Доказательство. Нужно доказать, что эти числа попарно не сравнимы по модулю . Предположим противное. Пусть

Так как НОД , то , что противоречит условию.

Теорема. Пусть - полная система вычетов по модулю . Пусть - целое число. Тогда - тоже полная система вычетов по модулю .

Лемма. Если , то НОД НОД .

Доказательство.

– целое число.

Отсюда . Любой общий делитель и является делителем . Отсюда НОД НОД .

Определение. Числа образуют приведенную систему вычетов по модулю , если они взаимно просты с и любое целое число, взаимно простое с , сравнимо с одним и только одним из этих чисел по модулю .

Пример. Приведенная система вычетов по модулю 10: 1,3,7,9.

Лемма. Все приведенные системы вычетов по модулю состоят из одного и того же количества чисел, которое обозначается - функция Эйлера.

Доказательство. Действительно, пусть есть две приведенные системы вычетов по модулю , состоящие из разного количества чисел:

Тогда так как числа образуют приведенную систему вычетов по модулю , то каждое из чисел сравнимо с одним и только одним из этих чисел. Поскольку , то, по принципу Дирихле, по крайней мере два числа из будут сравнимы с каким-то числом , а значит, будут сравнимы между собой по модулю . А это противоречит тому, что - приведенная система вычетов по модулю . Значит, .

Докажем теперь, что . В самом деле, числа, меньшие и взаимно простые с , образуют приведенную систему вычетов по модулю . Это следует из леммы.

Определение. Функция Эйлера (или тотиент) обозначает количество чисел, меньших и взаимно простых с .



Теорема. Если - приведенная система вычетов по модулю и - число, взаимно простое с , то - тоже приведенная система вычетов по модулю .

Если - простое, то .

Лемма. Если - простое, то .

Доказательство. Действительно, чисел, меньших простого и имеющих с ним общий делитель, всего .

Лемма. Пусть НОД . Тогда . Функция Эйлера мультипликативна.

Доказательство. Запишем все числа от 1 до следующим образом:

Числа в каждой строке образуют полную систему вычетов по модулю . Значит, взаимно простых с среди них . При этом эти числа расположены по столбцам - друг под другом, поскольку в каждом столбце стоят числа, сравнимые по модулю .

Числа в каждом столбце образуют полную систему вычетов по модулю . Действительно, -й столбец получается, если взять числа , образующие полную систему вычетов по модулю , умножить их на число , взаимно простое с , и прибавить к каждому из них .

Таким образом, в каждом столбце ровно чисел, взаимно простых с .

Так как число будет взаимно простым с тогда и только тогда, когда оно взаимно просто с и взаимно просто с , то количество чисел, взаимно простых с , равно .

Теорема. Пусть

Каноническое разложение числа . Тогда

Доказательство. По лемме о мультипликативности функции Эйлера

Пример.

Теорема (Эйлера). Если и - взаимно простые числа, то

Пусть - какая-нибудь приведенная система вычетов по модулю . . Тогда - тоже приведенная система вычетов по модулю . Следовательно, каждое из чисел первой последовательности сравнимо с одним из чисел второй последовательности по модулю , а каждое из чисел второй последовательности сравнимо с одним из чисел первой последовательности. Тогда

Так как каждое из чисел взаимно просто с , то на них сравнение можно сократить:

Следствие. Пусть – целые числа, – натуральные. Если , , НОД , то .

Доказательство. Пусть . Так как , то – натуральное число. Тогда

Значит, .

88вопрос
Гомотетия и подобие пространства

Гомотетию с центром O и коэффициентом k обозначают H k 0

Свойства преобразований гомотетии и подобия пространства аналогичны свойствам гомотетии и подобия плоскости, поэтому изучение первых следует начинать с повторения вторых. Подобие пространства с коэффициентом k можно разложить в композицию движения и гомотетии с некоторым центром и тем же коэффициентом.

Учащиеся должны знать, что при подобном преобразовании пространства сохраняется величина угла (плоского и двугранного), параллельные (перпендикулярные) прямые и плоскости отображаются на параллельные (перпендикулярные) прямые и плоскости. Это означает, что при подобном преобразовании пространства образом любой фигуры является фигура, имеющая такую же форму, что и данная фигура, но отличающаяся от нее лишь «своими размерами».

Задача 12. Дан правильный тетраэдр РАВС ; точки Р 1 , А 1 , В 1 , С 1 - центры его граней (рис.14). Докажите, что тетраэдр Р 1 А 1 В 1 С 1 подобен тетраэдру РАВС ; найдите коэффициент этого подобия.

Решение . Пусть точки Н и K - середины ребер соответственно АВ и ВС тетраэдра РАВС , точка А 1 - центр грани РВС , точка Р 1 - центр грани АВС (рис. 14). Это означает, что

РА 1: А 1 K = АР 1: Р 1 K = 2: 1,

А 1 K : РK = Р 1 K : АK = 1: 3,

Аналогично можно доказать, что
А 1 В 1 : АВ = 1: 3 и А 1 В 1 АВ ,
А 1 С 1 : АС = 1: 3 и А 1 С 1 АС ,
В 1 С 1 : ВС = 1: 3 и В 1 С 1 ВС ,
В 1 Р 1 : ВР = 1: 3 и В 1 Р 1 ВР ,
С 1 Р 1 : СР = 1: 3 и С 1 Р 1 СР .
Из этих соотношений между ребрами тетраэдров РАВС и Р 1 А 1 В 1 С 1 следует, что тетраэдр Р 1 А 1 В 1 С 1 - правильный, поэтому эти тетраэдры подобны; коэффициент подобия равен 1/3. (В профильных классах стоит доказать, что эти тетраэдры гомотетичны.)
Можно ввести определение: «Фигура F 1 называется подобной фигуре F , если существует преобразование подобия пространства, отображающее фигуру F на фигуру F 1 ». Тогда для доказательства подобия фигуры F 1 фигуре F достаточно найти хотя бы одно преобразование подобия, которое фигуру F отображает на фигуру F 1 ..

Определение. Параллельным переносом, или, короче, переносом фигуры, называется такое ее отображение, при котором все ее точки смещаются в одном и том же направлении на равные расстояния, т.е. при переносе каждым двум точкам X и Y фигуры сопоставляются такие точки X" и Y", что XX" = YY"

Основное свойство переноса:

Параллельный перенос сохраняет расстояния и направления, т.е. X"Y" = XY

Отсюда выходит, что параллельный перенос есть движение, сохраняющее направление и наоборот, движение, сохраняющее направление, есть параллельный перенос

Из этих утверждений также вытекает, что композиция параллельных переносов есть параллельный перенос

Параллельный перенос фигуры задается указанием одной пары соответствующих точек. Например, если указано, в какую точку A" переходит данная точка A, то этот перенос задан вектором AA", и это означает, что все точки смещаются на один и тот же вектор, т.е. XX" = AA" для всех точек Х

Центральная симметрия

Определение

Точки A и A" называются симметричными относительно точки О, если точки A, A", O лежат на одной прямой и OX = OX". Точка О считается симметричной сама себе (относительно О)

Две фигуры называются симметричными относительно точки О, если для каждой точки одной фигуры есть симметричная ей относительно точки О точка в другой фигуре и обратно

Как частный случай, фигура может быть симметрична сама себе относительно некоей точки О. Тогда эта точка О называется центром симметрии фигуры, а фигура центрально-симметричной

Определение

Центральной симметрией фигуры относительно О называется такое отображение этой фигуры, которое сопоставляет каждой ее точке точку, симметричную относительно О

Основное свойство: Центральная симметрия сохраняет расстояние, а направление изменяет на противоположное. Иначе говоря, любым двум точкам X и Y фигуры F соответствуют такие точки X" и Y", что X"Y" = -XY

Доказательство. Пусть при центральной симметрии с центром в точке О точки X и Y отобразились на X" и Y". Тогда, как ясно из определения центральной симметрии, OX" = -OX, OY" = -OY

Вместе с тем XY = OY - OX, X"Y" = OY" - OX"

Поэтому имеем: X"Y" = -OY + OX = -XY

Отсюда выходит, что центральная симметрия является движением, изменяющим направление на противоположное и наоборот, движение, изменяющее направление на противоположное, есть центральная симметрия

Центральная симметрия фигуры задается указанием одной пары существующих точек: если точка А отображается на А", то центр симметрии это середина отрезка AA"

Поворот вокруг прямой

Для более четкого представления о повороте вокруг прямой следует вспомнить поворот на плоскости около данной точки. Поворотом на плоскости около данной точки называется такое движение, при котором каждый луч, исходящий из данной точки, поворачивается на один и тот же угол в одном и том же направлении. Перейдем теперь к повороту в пространстве

Определение. Поворотом фигуры вокруг прямой a на угол (называется такое отображение, при котором в каждой плоскости, перпендикулярной прямой a, происходит поворот вокруг точки ее пересечения с прямой a на один и тот же угол (в одном и том же направлении. Прямая a называется осью поворота, а угол - углом поворота)

Отсюда видим, что поворот всегда задается осью, углом и направлением поворота

Теорема 1. Поворот вокруг прямой сохраняет расстояния, т.е. является движением

Теорема 2. Если движение пространства имеет множеством своих неподвижных точек прямую, то оно является поворотом вокруг этой прямой

Преобразования плоскости

Обычно в качестве полной системы вычетов по модулю m берутся наименьшие неотрицательные вычеты

0,1,...,m − 1

или абсолютно наименьшие вычеты, состоящие из чисел

,

в случае нечётного m и чисел

в случае чётного m .

См. также

Литература

  • И. М. Виноградов Основы теории чисел . - М.-Л.: Гос. изд. технико-теоретической литературы, 1952. - 180 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Полная система вычетов" в других словарях:

    По модулю m, любая совокупность целых чисел, содержащая по одному числу из каждого класса чисел по модулю m (два целых числа а и b принадлежат одному классу по модулю m, если а b делится на m; см. Вычет). В качестве П. с. в. чаще всего… …

    По модулю т любой набор из тнесравнимых между собой по модулю тцелых чисел. Обычно в качестве П. с. в. по модулю тберутся наименьшие неотрицательные вычеты 0, 1, . . ., т 1 или абсолютно наименьшие вычеты, состоящие из чисел 0, +1, . . ., в… … Математическая энциклопедия

    Часть полной системы вычетов (См. Полная система вычетов), состоящая из чисел взаимно простых с модулем m. П. с. в. содержит φ(m) чисел [φ(m) число чисел, взаимно простых с m и меньших m]. Всякие φ(m) чисел, не сравнимые по модулю m и… … Большая советская энциклопедия

    Сравнение по модулю натурального числа n в теории чисел отношение эквивалентности на кольце целых чисел, связанное с делимостью на n. Факторкольцо по этому отношению называется кольцом вычетов. Совокупность соответствующих тождеств и… … Википедия

    В теории чисел сравнение[уточнить] по модулю натурального числа n задаваемое означенным числом отношение эквивалентности на множестве целых чисел, связанное с делимостью на него. Факторпространство по этому отношению называется «кольцом… … Википедия

    Симметрия снежинки связана с группой поворотов на угол, кратный 60° Конечная группа алгебраическая группа, содержащая конечное число элементов (это число называется её порядком). Далее группа предполагается мультипликативной, то есть операция в… … Википедия

    Функция, к рая может быть представлена степенным рядом. Исключит, важность класса А. ф. определяется следующим. Во первых, этот класс достаточно ш и р о к: он охватывает большинство функций, встречающихся в основных вопросах математики и ее… … Математическая энциклопедия

    I Содержание: I. Начальное народное образование вообще. II. Начальное народное образование за границей: Австро Венгрия, Англия, Бельгия, Болгария, Германия, Голландия, Дания, Испания, Италия, Норвегия, Португалия, Румыния, Сербия,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - — родился 26 мая 1799 г. в Москве, на Немецкой улице в доме Скворцова; умер 29 января 1837 г. в Петербурге. Со стороны отца Пушкин принадлежал к старинному дворянскому роду, происходившему, по сказанию родословных, от выходца "из… … Большая биографическая энциклопедия

    Совокупность замкнутых формул логики предикатов 1 й ступени. Э. т. Th(К) класса К алгебраических систем сигнатуры наз. совокупность всех замкнутых формул логики предикатов 1 й ступени сигнатуры истинных на всех системах из класса К. Если класс… … Математическая энциклопедия

Уравнение деления (), рассмотренное в предыдущей секции, имеет два входа (a и n ) и два выхода (q и r ). В модульной арифметике мы интересуемся только одним из выходов - остатком r . Мы не заботимся о частном q . Другими словами, когда мы делим a на n , мы интересуемся только тем, что значение остатка равно r . Это подразумевает, что мы можем представить изображение вышеупомянутого уравнения как бинарный оператор с двумя входами a и n и одним выходом r .

Операции по модулю

Вышеупомянутый бинарный оператор назван оператором по модулю и обозначается как mod . Второй вход (n ) назван модулем . Вывод r назван вычетом . Рисунок 2.9 показывает отношение деления по сравнению с оператором по модулю.


Рис. 2.9.


Рис. 2.13.

Фактически применяются два набора операторов: первый набор - один из бинарных операторов ; второй - операторы по модулю. Мы должны использовать круглые скобки, чтобы подчеркнуть порядок работ. Как показано на рис. 2.13 , входы (a и b ) могут быть членами Z или Z n .

Пример 2.16

Выполните следующие операторы (поступающие от Z n ):

а. Сложение 7 и 14 в Z 15

б. Вычитание 11 из 7 в Z 13

в. Умножение 11 на 7 в Z 20

Решение

(14+7) mod 15 -> (21) mod 15 = 6 (7–11) mod 13 -> (-4) mod 13 = 9 (7x11) mod 20 -> (77) mod 20 = 17

Пример 2.17

Выполните следующие операции (поступающие от Z n ):

a. Сложение 17 и 27 в Z 14

b. Вычитание 43 из 12 в Z 13

c. Умножение 123 на -10 в Z 19

Решение

Ниже показаны два шага для каждой операции:

(17 + 27) mod 14 -> (44) mod 14 = 2 (12 – 43) mod 13 -> (–31) mod 13 = 8 ((123) x (–10)) mod 19 -> (–1230) mod 19 = 5

Свойства

Мы уже упоминали, что два входа для трех бинарных операторов в сравнении по модулю могут использовать данные из Z или Z n . Следующие свойства позволяют нам сначала отображать два входа к Z n (если они прибывают от Z ) перед выполнением этих трех

или же любые последовательные p числа.

Данная система называется полною системою чисел, не сравнимых по модулю p или же полною системою вычетов по модулю p . Очевидно, что всякие p последовательных чисел образуют такую систему.

Все числа, принадлежащих к одному классу, имеют много общих свойств, следовательно по отношению к модулю их можно рассматривать как одно число. Каждое число, входящее в сравнение как слагаемое или множитель, может быть заменено, без нарушения сравнения, числом, сравнимым с ним, т.е. с числом, принадлежащим к одному и тому же классу.

Другой элемент, который является общим для всех чисел данного класса, является наибольший общий делитель каждого элемента этого класса и модуля p .

Пусть a и b сравнимы по модулю p , тогда

Теорема 1. Если в ax+b вместо x подставим последовательно все p членов полной системы чисел

Поэтому все числа ax+b , где x =1,2,...p -1 не сравнимы по модулю p (в противном случае, числа 1,2,...p -1 были бы сравнимы по модулю p .

Примечания

1) В данной статье под словом число будем понимать целое число.

Литература

  • 1. К.Айрленд, М.Роузен. Классическое введение в современную теорию чисел.− М:Мир, 1987.
  • 2. Г.Дэвенпорт. Высшая арифметика.− М:Наука, 1965.
  • 3. П.Г. Лежен Дирихле. Лекции по теории чисел. − Москва, 1936.