Плохими коллекторами нефти являются следующие породы. Учебное пособие: Состав коллекторов пласта месторождения

КОЛЛЕКТОРОВ НЕФТИ И ГАЗА

Для определения характеристики нефтяного и газового пласта необходимо знать:

1) гранулометрический (механический) состав пород;

2) пористость;

3) проницаемость;

4) капиллярные свойства;

5) удельную поверхность;

6) механические свойства (упругость, пластичность, сопротивление разрыву, сжатию и другим видам деформаций);

7) тепловые свойства (теплоемкость, теплопроводность, температуропроводность);

8) насыщенность пород водой, нефтью и газом в различных условиях.

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать при разработке, называются коллекторами .

Большинство пород-коллекторов имеют осадочное происхождение. Коллекторами нефти и газа являются как терригенные (пески, песчаники и алевролиты), так и карбонатные (известняки, доломиты, мел) породы.

По типу порового пространства выделяют три группы коллекторов нефти и газа:

1.Поровые (гранулярные). Они характерны для обломочных пород.

2.Трещинные. Они характерны для любых горных пород.

3. Каверноз­ные. Они характерны для карбонатных пород.

В природе часто развиты смешанные типы коллек­торов. Способность породы быть коллектором обусловлена её фильтрационно-ёмкостными свойствами: пористостью и проницаемостью.

Основная масса терригенных коллекторов характеризуется межзерновым (поровым) пространством – это межзерновые или гранулярные коллекторы. Однако среди терригенных пород встречаются и коллекторы со смешанным характером пустотного пространства. Выделяются трещинно-поровые и даже кавернозно-поровые разности.

Карбонатные породы как коллекторы нефти и газа уверенно конкурируют с терригенными образованиями. По различным данным, от 50 до 60% современных мировых запасов углеводородов приуро­чено к карбонатным образованиям. Среди них выделяются наи­лучшие по качеству коллекторы - карбонатные породы рифовых сооружений. Добыча нефти и газа, большая по объему, произво­дится из известняков и доломитов, в том числе из палеозоя и докембрия; наиболее крупные месторождения открыты в мезо­зойских и палеозойских породах.

По формированию пустотного пространства трещинные коллекторы отличаются от других типов. Для определения трещинной пустотности и проницаемости существуют особые способы. Как уже упоминалось, существуют макро- и микротрещины раскрытием соответственно более или менее 0,1 мм. Макротрещины обычно изучаются, описываются и измеряются в поле обнажении, а микротрещины - под микроскопом в шлифах часто увеличенного размера. Необходимым элементом при исследовании трещин является определение их ориентации как в пространстве (вертикальные, горизонтальные, наклонные), так и отношению к пласту (по слоистости, поперек слоистости, диагональные) и к структурным формам (продольные, поперечные, радиальные и др.).

В генетическом отношении выделяются литогенетические и тектонические трещины.

НЕТРАДИЦИОННЫЕ КОЛЛЕКТОРЫ

К породам, роль которых в нефтегазоносности пока еще неве­лика по сравнению с вышеописанными, относятся толщи, сло­женные глинистыми, кремнистыми, вулканогенными, интрузив­ными, метаморфическими породами и др. Их можно разделить на две группы. В одних нефтегазоносность обычно сингенетична, в других она связана с приходом углеводородов из соседних толщ.

По действующей в настоящее время классификации горные породы разделяются на три основные группы: изверженные, осадочные и метаморфические .

К изверженным относятся породы, образовавшиеся в результате застывания и кристаллизации магматической массы сложного минералогического состава.

К осадочным породам относятся продукты разрушения литосферы, мелкораздробленные продукты вулканических явлений и продукты жизнедеятельности организмов.

Метаморфические породы образуются из осадочных и изверженных пород в результате глубокого физического, а иногда и химического изменения последних под влиянием высоких температур, давлений и химических воздействий. К метаморфическим породам относятся: сланцы, мрамор, яшмы и другие, имеющие преимущественно кристаллическое строение.

По происхождению осадочные породы делятся на терригенные , состоящие из обломочного материала, хемогенные, образующиеся из минеральных веществ, выпавших из водных растворов в результате химических и биохимических реакций или температурных изменений в бассейне, и органогенные , сложенные из скелетных остатков животных и растений.

Согласно этому делению к терригенным отложениям относятся:

пески, песчаники, алевриты, алевролиты, глины, аргиллиты и другие осадки обломочного материала ;

к хемогенным – каменная соль, гипсы, ангидриты, доломиты, некоторые известняки и др.;

К органогенным – мел, известняки органогенного происхождения и т. п.

Подавляющая часть нефтяных и газовых месторождений приурочена к коллекторам трёх типов – гранулярным (терригенный, обломочный), трещинным исмешанного строения.

К первому типу относятся коллекторы, сложенные песчано-алевритовыми породами, состоящие из песчаников, песка, алевролитов, реже известняков, доломитов, поровое пространство которых состоит в основном из межзерновых полостей.

Коллекторы трещинного типа сложены преимущественно карбонатами, поровое пространство которых состоит из микро- и макротрещин. При этом участки коллектора между трещинами представляют собой плотные малопроницаемые блоки пород, поровое пространство которых практически не участвует в процессах фильтрации.

На практике, однако, чаще всего встречаются коллекторы смешанного типа , поровое пространство которых включает как системы трещин, так и поровое пространство межзерновых полостей, а также каверны и карст .

Трещинные коллекторы смешанного типа в зависимости от наличия в них пустот различного вида подразделяются на подтипы: трещинно-пористые, трещинно-каверновые, трещинно-карстовые.

Ловушки углеводородов, основные условия их формирования.

ПРИРОДНЫЕ ЛОВУШКИ НЕФТИ И ГАЗА

Под ловушкой понимается часть природного резервуара, в кото­рой возникают условия, способствующие образованию и сохранению скоплений (залежей) нефти и газа. Ловушка чаще всего характеризуется застойными гидродинамическими условиями. Гравитационный фактор определяет распределение в ловушке газа, нефти и воды по их удельным весам. Н.Б. Вассоевич предлагает делить все ловушки на 3 основных типа: замкнутые, полузамкнутые и незамкнутые. Первые два типа связаны с разного рода выклиниванием пластов коллекторов. В незамкнутых ловушках углеводороды удерживаются благодаря антиклинальному перегибу слоев или существованию выступов – это структурный тип ловушек. В общем плане выделяются две группы ловушек: структурные и неструктурные (неантиклинальные). К структурным относятся те ловушки, которые образовались в результате изгиба слоев природных резервуаров пластового и массивного типов.

Очень большим разнообразием форм и генезиса характеризуются ловушки неструктурного типа. Среди них различают:

а) ловушки стратиграфических несогласий, обусловленные экранированием пласта коллектора по поверхности несогласия;

б) ловушки литологические, обусловленные выклиниванием или литологическим замещением пород коллекторов;

в) палеогеоморфологические ловушки, обусловленные различными факторами формирования древнего рельефа.

1. Структурные .

2. Массивные.

3. Ли­тологически ограниченные .

СТРУКТУРНЫЕ ЛОВУШКИ

Чтобы понять, что такое структурные ловушки, необходимо различать два понятия: «структурная амплитуда» и «структурный рельеф» (рис.8).

Структурная амплитуда (замкнутая высота) определяется как превышение гипсометрически наиболее высокой точки над самой низкой замкнутой изогипсой.

Под структурным рельефом складки, обычно превышающим ее структурную амплитуду, понимается высота, на которую смятый в антиклинальную складку пласт возвышается над региональным наклоном (тренд). Он измеряется длиной перпендикуляра, опущенного из наивысшей точки складки на поверхность регионального наклона пласта.

Рис.8. Структурная амплитуда и структурный рельеф.

При определении структурной амплитуды за горизонтальную опорную поверхность принимается уровень моря. Величина структурной амплитуды при регионально наклонном пласте не равна структурному рельефу: H Р > H С.

Одна и та же складка может иметь различную структурную амплитуду, величина которой изменяется при изменении регионального наклона (рис. 9).

Рис.9. Примеры величины структурной амплитуды.

Из ловушек структурного типа обычно различают:

1. Сводовые.

2. Сводовые тектонически экранированные.

СВОДОВЫЕ ЛОВУШКИ

Углеводороды, мигрируя в коллекторах по восстанию слоёв или перпендикулярно к их напластованию по тектоническим нарушениям попадают в ловушку, т.е. в своды антиклинальных структур, где и формируют промышленные скопления нефти и газа (рис.10 а).

Нередко сводовые ловушки называют антиклинальными, все остальные неантиклинальными.

Главной составной частью природного резервуара является коллектор. Коллектор – это горная порода способная вмещать в себя флюид и отдавать, при существующих методах эксплуатации месторождений.

Любая порода, которая содержит сообщающиеся между собой поры, пустоты, трещины, может стать коллектором.

Выделяют следующие группы пород коллекторов по генезису:

Обломочные или терригенные,

Биогенные или органогенные и хемогенные,

Смешанные,

Нетрадиционные коллекторы.

Терригенные или обломочные коллекторы (межзерновые, гранулярные )- это породы, образовавшиеся в результате переноса и механического накопления продуктов дезинтеграции более древних пород. Поскольку обломочный материал чаще всего транспортируется с суши в результате процессов выветривания, их еще называют терригенными. Терригенные отложения состоят преимущественно из кварца, полевых шпатов, слюд, глинистых минералов и обломков пород.

По величине обломков различают породы:

Таблица 4.1

Основная масса обломочной породы состоит из частиц, значительно более мелких, чем средние по размеру зерна. Эти мелкие частицы заполняют пустоты между более крупными зернами. Какую-то часть пустот за­полняет цемент, состоящий из глинистого или карбонатного вещества. Обломки обычносвязаны цементом. Цемент может быть сингенетическим – первичным и эпигенетическим – вторичным. Обломки обычносвязаны цементом.

Хемогенные породы-коллекторы - это осадочные образования, состоящие из минерального вещества, выпавшего на месте его формирования и не подвергшегося переносу. К ним относятся известняки, мергели, доломиты, мел, кремнистые сланцы. Пустотное пространство хемогенных коллекторов образовано трещинами и кавернами выщелачивания.

Среди карбонатных коллекторов особое место занимают биогенные или органогенные толщи, образованные жизнедеятельностью организмов: кораллов, мшанок, моллюсков, диатомовых водорослей.

Нетрадиционные коллекторы , образовавшиеся при выходе газов из вулканической лавы (туфы). Газовое месторождение в туфах и лавах риолитов палеогена в Японии.

Коллекторы метаморфических и магматических пород образовавшиеся в результате выветривания, выщелачивания, тектонической дезинтеграции - вторичных изменений пород. Месторождение Белый Тигр во Вьетнаме - коллектор образовался в результате выщелачивания и дезинтеграции гранитогнейсов.

Характеристика коллекторов дается по их основным свойствам: пористости, проницаемости, структуре порового пространства. По технологическим характеристикам коллекторы должны обладать определенной емкостью и проницаемостью.

Свойства горной породы вмещать (емкость) и пропускать (проницаемость) через себя жидкости и газы называются фильтрационно-емкостными свойствами (ФЕС ).

Емкость определяется пористостью – объемом пустот в породе. Пористость по генетической классификации может быть:

Первичной- пустоты образуются в процессе осадконакопления и породообразования (промежутки между зернами – межзерновые поры, между плоскостями наслоения, камеры в раковинах и т.д.).

И вторичной- поры образуются в результате последующих процессов: разлома и дробления породы, растворения, перекристаллизации, возникновения трещин вследствие сокращения породы (например, при доломитизации) и других процессов. Пористость измеряется в про­центах.

Суммарный объем пустот в породе называется общей (теоретической, полной, абсолютной) пористостью.

Для характеристики общей пористости используется коэффициент общей пористости - отношение суммарного объёма взаимосвязанных и изолированных пор к общему объёму горной породы

К п = V пор / V обр

где, К п - коэффициент пористости,

V пор - суммарный объем пор,

Величина общей пористости еще недостаточное свидетельство коллекторских свойств породы. Поры и пустоты могут быть взаимосообщающимися и тупиковыми (изолированными).

Открытая пористость – это объем связанных, сообщающихся между собой пор. Коэффициент открытой пористости всегда меньше коэффициента общей пористости.

К о = V о / V обр

где, К о - коэффициент открытой пористости,

V пор - объем открытых, взаимосообщающиихся пор,

V обр – объем образца породы.

Эффективная пористость – это объем пор, из которых углеводороды могут быть извлечены при разработке, еще меньшая величина.

К э = V э / V обр

где, К э - коэффициент эффективной пористости,

V пор - объем пор, через которые возможно движение флюида

V обр – объем образца породы.

Объем пор зависит от формы и размеров частиц обломочной породы, их уплотненности, отсортированности, количества, качества и типа цемента.

Тип цемента (по М.С. Швецову)

Таблица 4.2.

Тип цемента Взаимоотношение обломочных зерен и цемента
Базальный Зерна не соприкасаются друг с другом, они как бы вкраплены в цемент. Цементация прочная
Поровый Зерна соприкасаются друг с другом, все пространство между ними заполнено цементом. Прочность цементации различная
Порово-базальный Часть зерен касается друг друга, часть не касается. Прочность цементации различная
Контактовый Зерна соприкасаются друг с другом, и в местах их соприкосновения развит цемент. Цементация непрочная
Коррозионный (разъедания) Цемент заполняет все пространство между зернами и частично внедряется в них вследствие растворения зерен. Очень прочная цементация.
Сгустковый (пятнистый) Цемент развит неравномерно, пятнами. Прочность цементации различная

Важнейшим показателем, характеризующим породу как коллектор, является размер пор: их ширина или просвет.

Пористость обусловлена наличием:

Пор – пространство между отдельными зернами, слагающими горную породу. В хорошо окатанных, близких к шарообразной форме зернах, пористость не зависит от размера зерен, а определяется их укладкой и однородностью по размеру. Неглубоко залегающие, недоуплотненные коллекторы сеноманского возраста Уренгойского месторождения имеют пористость до 40%.

При низкой отсортированности мелкие зерна заполняют свободное пространство между крупными, чем уменьшают пористость.

Рис. 4.5. Примеры идеальной упаковки зерен:

кубическая (К п = 45%); ромбическая (К п = 25%)

Каверн – сравнительно крупных пустотных пространств, образовавшихся в результате действия процессов выщелачивания.

Трещин – разрывов сплошности горных пород, обусловленных литогенетическими причинами или тектонической деятельностью. Например: с возрастанием горного давления, уплотнением пород пористость уменьшается, но не безгранично. При давлении 350 - 400 кг/см 3 песчаники начинают дробиться, появляются трещины, что приводит к возникновению вторичной пористости.

Литологическая трещиноватость (уплотнение, перекристаллизация, обезвоживание, выветривание) приспосабливается к структурно-текстурным особенностям пород. Трещины ветвятся, огибают отдельные зерна, в целом их расположение хаотично, поверхность стенок неровная.

Тектоническая трещиноватость (колебательные, складкообразовательные, дизьюнктивные движения) не считается со структурно-текстурными свойствами пород.

Коллекторы нефти и газа

(от cp.-век. лат. collector - * a. oil and gas reservoirs; н. Erdol-Erd gasspeichergesteine, Erdol- und Gasspeicher; ф. roches-reservoirs de petrole et de gaz, roches-magasins de petrole et de gaz; и. rocas reservorios de gas y petroleo ) - горн. породы, способные вмещать жидкие, газообразные и отдавать их в процессе разработки м-ний. Критериями принадлежности пород к K. н. и г. служат величины проницаемости и ёмкости, обусловленные развитием пористости, трещиноватости, кавернозности. Величина полезной для нефти и газа ёмкости зависит от содержания остаточной водонефтенасыщенности. Ниж. пределы проницаемости и полезной ёмкости определяют пром. оценку пластов, она зависит от состава флюида и типа коллектора.
Долевое участие пор, каверн и трещин в фильтрации и ёмкости определяет K. н. и г.: поровый, трещинный или смешанный. Коллекторами являются породы разл. вещественного состава и генезиса: терригенные, карбонатные, глинисто-кремнисто-битуминозные, вулканогенно-осадочные и другие.
Коллекторские свойства терригенных пород зависят от гранулометрич. состава, сортированности, окатанности и упаковки обломочных зёрен скелета, кол-ва, состава и типа цемента. Эти параметры обусловливают геометрию порового пространства, определяют величины эффективной пористости, проницаемости, принадлежность пород к разл. классам порового типа коллекторов. Минеральный состав глинистой примеси, характер распределения и кол-во её влияют на фильтрац. способность терригенных пород; увеличение глинистости сопровождается снижением проницаемости.
Коллекторские свойства карбонатных пород определяются первичными условиями седиментации, интенсивностью и направленностью постседиментац. преобра- зований, за счёт влияния к-рых развиваются поры, трещины и крупные полости выщелачивания. Особенности карбонатных пород - ранняя , избират. и выщелачивание, склонность к трещинообразованию обусловили большое разнообразие морфологии и генезиса пустот; они проявились в развитии широкого спектра типов K. н. и г. Наиболее значит. запасы углеводородов сосредоточены в каверново-поровом и поровом типах.
Вулканогенные и вулканогенно-осадочные K. н. и г. отличаются характером пустотного пространства, большой ролью трещиноватости, резкой изменчивостью свойств в пределах м-ния. Особенность коллекторов заключается в несоответствии между сравнительно низкими величинами ёмкости, проницаемости и высокими дебитами скважин, вскрывающих залежи в этих породах. Наиболее часто встречаются трещинный и порово-трещинный типы коллекторов.
Глинисто-кремнисто-битуминозные породы отличаются значит. изменчивостью состава, неодинаковой обогащённостью органич. веществом; , развитие субкапиллярных пор и микротрещиноватость обусловливают относительно низкие фильтрационно-ёмкостные свойства. B нек-рых разностях достигает 15% при проницаемости в доли миллидарси. Преобладают трещинные и порово-трещинные K. н. и г. Пром. нефтеносность глинисто-кремнисто- битуминозных пород установлена в баженовской (Зап. ) и пиленгской (Сахалин) свитах.
Наиболее значит. запасы углеводородов приурочены к песчаным и карбонатным рифогенным образованиям. Выявление K. н. и г. проводится комплексом Геофизических исследований скважин и анализом лабораторных данных c учётом всей геол. информации по м-нию. При изучении карбонатных K. н. и г., кроме традиц. литологич. и промыслово-геофиз. методов, используют фотокаротаж, ультразвуковой, капиллярного насыщения пород люминофорами и др. методы. K. И. Багринцева.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Смотреть что такое "Коллекторы нефти и газа" в других словарях:

    Любое перемещение этих веществ в земной коре. Возможности, виды и м бы его контролируются факторами, действующими в тех или иных условиях геол. обстановки: физ. свойствами, состоянием мигрирующих нефти и газа, свойствами г. п. и участием в… … Геологическая энциклопедия

    Геология нефти и газа Специализация: Геология нефти и газа Периодичность: 6 выпусков в год Сокращённое название: ГНГ Язык: русский Главный редактор: А.И.Варламов … Википедия

    Содержание 1 Миграция нефти 2 Нефтеносные породы и скопления нефти … Википедия

    Нефть результат литогенеза. Она представляет собой жидкую (в своей основе) гидрофобную фазу продуктов фоссилизации (захоронения) органического вещества (керогена) в водно осадочных отложениях в бескислородных условиях.… … Википедия

    Подготовка нефти к переработке путем удаления из нее воды, минер. солей и мех. примесей. При добыче нефти неизбежный ее спутник пластовая вода (от < 1 до 80 90% по массе), к рая, диспергируясь в нефти, образует с ней эмульсии типа вода в нефти … Химическая энциклопедия

    колектори нафти і газу - коллекторы нефти и газа oil and gas reservoirs Erdöl Erdgasspeicher, Erdöl und Gasspeicher г.п., здатні вміщати рідкі, газоподібні вуглеводні і віддавати їх у процесі розробки родовищ. Критеріями приналежності порід до К.н.г. слугують величини… … Гірничий енциклопедичний словник

    - [ναφτα (нафта)] жидкий каустобиолит, исходное звено в классификационном спектре нафтидов. Генетически Н. представляет собой обособившийся в самостоятельные скопления концентрат жидких, преимущественно углеводородных,… … Геологическая энциклопедия

    Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/8 октября 2012. Пока процесс обсуждени … Википедия

    Федеративная Республика Нигерия (Federal Republic of Nigeria), гос во в Зап. Африке. Входит в Содружество (брит.). Пл. ок. 924 тыс. км2. Hac. ок. 92,4 млн. чел. (оценка, 1984). Столица Лагос. Состоит из 19 штатов. Офиц. язык английский.… … Геологическая энциклопедия

    В Википедии есть статьи о других людях с такой фамилией, см. Смехов. Евсей Максимович Смехов (1898 11 февраля 1996) советский учёный нефтяник, зам.директора ВНИГРИ профессор ВНИГРИ доктор наук. Свою трудовую деятельность… … Википедия

Книги

  • Журнал Научно-технический "Геология нефти и газа № 6/2015 , . Содержание номера РЕСУРСЫ И ЗАПАСЫ УВ Шеин В. С. Нефтегазогеологическое районирование территорий и акваторий России В статье рассмотрены существующиепринципы…

Типы пород – коллекторов, гранулометрический состав пород, коллекторские свойства трещиноватых пород.

К настоящему времени предложен ряд классификаций коллекторов терригенного (обломочного) и карбонатного состава, однако ни одна из них не получила практического применения. Это объясняется тем, что трудно создать универсальную классификацию коллекторов, которая отражала бы все их свойства и представляла бы не только академический интерес, но и удовлетворяла бы запросам промышленности, оказывая существенную помощь при поисках, разведке и разработке нефтяных и газовых месторождений.

В различных опубликованных классификациях рассматриваются самые разнообразные свойства коллекторов: в одних излагаются морфология и генезис поровых пространств (И.М. Губкин), в других коллекторы расчленяются по форме их поровых пространств (П.П. Авдусин и М.А. Цветкова), в третьих они расчленяются по проницаемости (А.Г. Алиев, Г. И. Теодорович), далее по признакам, характеризующим различные генетические типы коллекторов (Н. Б. Вассоевич), наконец, по эффективной пористости и проницаемости (А. А. Ханин) и т. д.

Основываясь на данных о пористости и проницаемости горных пород, все известные коллекторы нефти и газа можно подразделить на две большие группы: межгранулярные (поровые) и трещинные.



Основное их различие заключается в том, что емкость и фильтрационные свойства межгранулярных коллекторов (чаще всего песчаников) определяются в основном структурой порового пространства, тогда как в трещинных коллекторах фильтрация нефти и газа обусловливается главным образом трещинами. Основной емкостью для трещинных коллекторов служат те же, что и для межгранулярных, - межзерновые поры, а в карбонатных породах также и каверны, микрокарстовые пустоты и стилолитовые полости.

Роль самих трещин в общей емкости трещинного коллектора, как правило, незначительна и лишь иногда возрастает в зонах дробления горных пород вблизи дизъюнктивных дислокаций.

Трещинные коллекторы характеризуются разнообразием и сложностью их строения, наличием в них микротрещин, роль которых является ведущей в фильтрации флюидов. Однако не следует смешивать трещинный коллектор с трещиноватой породой, так как трещинный коллектор характеризуется лишь ему присущими специфическими особенностями, которые были указаны выше.

Е.М. Смехов и другие по условиям фильтрации выделяют два типа коллекторов - межгранулярные и трещинные, - а по характеру их емкости - каверновый, карстовый, смешанный и порово-трещинный, которые, в свою очередь, подразделяются по преобладающему значению той или иной структуры пустот.

Большая часть имеющихся в трещиноватых породах пустот, определяющих тип коллектора, сообщаются благодаря широко развитой в них сети микротрещин.

Приведенная классификация трещинных коллекторов может оказаться полезной на практике, так как выделение в разрезе того или иного типа трещинного коллектора способствует выбору надлежащего метода разведки и разработки месторождения, а также учету необходимых параметров (пористость, коэффициенты нефтенасыщенности и нефтеотдачи) для подсчета запасов нефти и газа.

Природные коллекторы весьма разнообразны по строению и чаще всего представлены смешанными типами с преобладанием того или другого основного типа.

Во всех районах распространены преимущественно две системы трещин, одна из которых, как правило, имеет простирание, совпадающее с простиранием слоев, вторая - с направлением падения слоев. Спорадически появляются диагональные к ним системы трещин.

Другой характеристикой трещиноватости является густота трещин, тесно связанная с литологией пород. Обычно наибольшей рас-тресканностью обладают кремнистые разности, затем глинистые и известковистые. В песчаных разностях в общем случае отмечены минимумы трещиноватости. Интенсивность трещиноватости не зависит от мощности слоя, что доказано на большом фактическом материале.

При изучении трещин в шлифах отмечено, что микротрещины развиты в той или иной мере во всех литологических разностях горных пород. Наименьшее количество трещин имеют песчаники и алевролиты, однако и в них отмечены открытые трещины и трещины, заполненные желтым битумом.

В то время как распределение трещиноватости в разрезе зависит от литологических разностей пород, распределение максимумов растресканности по площади тесно связано с тектоническими явлениями, контролируемыми упругостью породы. Имеются данные о том, что независимо от условий, максимумы трещиноватости преимущественно располагаются на периклиналях структур. Иногда они приурочены к изгибам слоев.

В то же время структуры платформенного типа имеют максимумы трещиноватости, спорадически распространенные по крыльям складок, на структурах геосинклинального типа - вдоль осей.

Согласно изложенной характеристике трещиноватых пород при определении их пористости (емкости) для подсчета запасов основное внимание должно быть уделено изучению межзерновой пористости. Однако в некоторых случаях при выяснении емкости коллектора необходимо учитывать и трещинную пористость, если межзерновая или вторичная равны первым единицам процента, а трещинная 1% и более.

Гранулометрический состав пород.Гранулометрический анализ горной породы дает представление о количественном содержании в ней частиц различной величины. Количественное содержание и соотношение фракций частиц в известной мере определяют пористость, проницаемость и коллекторские свойства породы. Гранулометрический анализ выражается в определении процентного содержания фракций зерна различной крупности (в мм). Он производится различными методами, подробно описываемыми в специальной литературе.

В промысловых условиях гранулометрический состав породы обычно определяют ситовым анализом, заключающимся в разделении частиц размером свыше 0,1 мм (0,074 мм). Для разделения частиц менее 0,074 мм применяют седиментационный и другие методы. Фракционный состав породы обычно записывают в таблицу (табл. 1).

По гранулометрическому составу выделяют разнообразные породы: глины, алевриты, пески и т. д. Характер дисперсности пород определяется не только их гранулометрическим составом, но и удельной поверхностью. Удельной поверхностью породы называется суммарная поверхность частиц, содержащихся в единице объема образца. Между гранулометрическим составом и удельной поверхностью существует определенная зависимость: чем больше мелких частиц в породе, тем больше ее удельная поверхность, и чем больше крупных частиц, тем меньше удельная поверхность. Таким образом, определение удельной поверхности породы дополняет данные гранулометрического анализа.

Наибольшую удельную поверхность имеют пелиты, меньшую - алевриты, а наименьшую - псаммиты. С увеличением удельной поверхности, как правило, ухудшаются коллекторские свойства породы.

Помимо этого, на основании данных гранулометрического состава судят о характере однородности породы. Для этого строят кривые суммарного состава и распределения зерен песка по размерам, откладывая по оси ординат нарастающие весовые проценты фракций, а по оси абсцисс - диаметры частиц в логарифмическом масштабе.

Построение указанной кривой в соответствии с примером гранулометрического состава илистого мелкозернистого песка, приведенного в таблице, ведется следующим образом. Данные таблицы преобразуют в удобный для графического изображения вид нарастающих процентов для соответствующих диаметров частиц.

На основе указанных данных строят кривую суммарного грануло­метрического состава. По указанной кривой определяют коэффициент неоднородности породы, под которым понимают отношение диаметра частиц фракции, составляющей со всеми более мелкими фракциями 60% вес. от веса всего песка, к диаметру частиц фракции, составляющей со всеми более мелкими фракциями 10% вес. от веса песка, т.е.

Для однородного по составу песка коэффициент неоднородности равен единице. Коэффициент неоднородности пород нефтяных месторождений России колеблется в пределах 1,1 – 20.

Знание однородности пород позволяет получить относительное суждение о его коллекторских свойствах, которые улучшаются для однородных песков (и песчаников) по сравнению с неоднородными.

Наряду с этим знание гранулометрического состава пород позволяет выбрать размер щелей фильтров в эксплуатационных колоннах для предотвращения (или ограничения) поступления песка из пласта в скважину.

Трещиноватость пород. Более 60% добываемой в настоящее время нефти в мире приур­чено к карбонатным коллекторам. В связи с этим проблема изучения трещинных коллекторов в последние годы приобрела весьма актуальное значение.

Изучение природы пористости и проницаемости карбонатных пород, их стратиграфии, тектоники, геологической истории и палеогеографии позволяет более эффективно проводить поиски, разведку и разработку связанных с ними залежей нефти.

Литолого-петрографическое изучение трещиноватости пород показало широкое распространение в породах микротрещиноватости («волосные» микротрещины). По происхождению микротрещины могут быть подразделены на диагенетическо-тектонические и тектонические. Выяснение происхождения трещиноватости возможно лишь при детальном изучении петрографических и геологических данных, характеризующих породы, и при наличии большого каменного материала.

В большинстве случаев трещиноватость пород преимущественно связана с тектоническими и реже с диагенетическими процессами.

Трещины диагенетического происхождения свойственны преимущественно известнякам и доломитам, они располагаются чаще перпендикулярно к слоистости.

Распространение трещин из одного слоя в другой с сечением поверхности напластования может свидетельствовать о тектоническом происхождении трещин. Трещины нетектонического происхождения обычно образуют в плане многоугольную сетку. Вопрос о происхождении микротрещин еще недостаточно изучен и требует проведения дальнейших исследований.

Нетектонические трещины, именуемые первичными, образовались в стадию позднего диагенеза и эпигенеза. В породах, прошедших стадию хотя бы первых слабых тектонических (колебательных) движений, первичные трещины преобразуются в тектонические и приобретают свойственные им особенности. Так как в земной коре не существует недислоцированных пород, кроме современных осадков, выделение более или менее значительного количества первичных трещин затруднительно.

В настоящее время тектоническое происхождение подавляющего большинства трещин можно считать доказанным. Об этом свидетельствуют особенности, свойственные трещиноватости:

1)объединение трещин в системы, образующие более или менее правильные геометрические сетки;

2)преимущественно вертикальный относительно слоистости пород наклон трещин;

3)тесная связь ориентировок основных систем трещин с направлением тектонических структур.

Такое происхождение имеют трещины в пределах одного пласта, а также пересекающие несколько пластов независимо от их состава и мощности. Аналогичное явление наблюдается в приконтактных трещинах, развитых на границах пород различного лито логического состава. Лишь трещины по слоистости (или по плоскостям, близким к ней, как, например, трещины кливажа) и диагональные к слоистости представляют исключение из преобладающих трещин, ориентированных в основном перпендикулярно к напластованию пород. Их происхождение связано с влиянием как первичных, так и вторичных процессов растворения (преимущественно в карбонатных породах) и односторонними направлениями тектонических деформаций в пластичных породах.

При изучении трещиноватости горных пород с целью определения их коллекторских свойств основной интерес представляют тектонические трещины.

Трещины, которые можно наблюдать невооруженным глазом в обнажениях, горных выработках, в керне, называют макротрещинами. В отличие от них трещины, различимые лишь в шлифах под микроскопом, называют микротрещинами. Верхний предел раскрытости (ширины) микротрещин условно принято считать равным 100 мк.

В целом трещиноватость (макро- и микротрещины) в горных породах характеризуется относительно правильными геометрическими системами трещин. В общем случае геометрическая сетка состоит из двух основных систем вертикальных (к слоистости) трещин с взаимно перпендикулярными направлениями. В отдельных случаях геометрическая сетка трещиноватости горных пород может быть представлена одной системой горизонтальных трещин по отношению к плоскостям напластования (рассланцованные, тонкослоистые породы) или тремя перпендикулярными системами (мергели), или сочетанием нескольких различно ориентированных систем (глины), создающим впечатление «бессистемного» (хаотичного) расположения трещин.

Установленная закономерность в расположении и ориентировке трещин в горной породе может рассматриваться как один из главных признаков, позволяющих определить такие важные параметры, как интенсивность трещиноватости и направление главных систем трещин.

Интенсивность трещиноватости пласта обусловливается общим количеством развитых в нем трещин и зависит от его литологического состава, степени метаморфизма пород, мощности вмещающей среды и структурных особенностей залегания пласта.

На коллекторские свойства трещиноватых пород значительное влияние оказывает литологический фактор; характер распределения и интенсивность проявления трещиноватости тесно связаны с вещественным составом исследуемых пород и структурно-текстурными особенностями; наиболее трещиноватыми являются доломитизированные известняки, затем чистые известняки, доломиты, аргиллиты, песчано-алевритовые породы, ангидрито-доломитовые породы и ангидриты.

Анализ большого фактического материала, проведенный в научно-исследовательских организациях, позволил установить, что проницаемость трещиноватых пород обусловливается системами развитых в них трещин и в общем случае пропорциональна их густоте.

Благодаря распределению трещин в горной породе по системам можно определить густоту трещин, которая дает возможность определить объемную и поверхностную плотности трещин.

Необходимые сведения о трещиноватости пород могут быть получены в процессе наблюдений в обнажениях на дневной поверхности, а затем экстраполированы на глубину - на участки со сходным геологическим строением. Такие наблюдения представляют большой практический интерес не только для территорий, где отсутствует глубокое бурение, но и для площадей, недра которых вскрыты скважинами.

Другим важным параметром трещиноватости горных пород является раскрытость (ширина) трещин. В зависимости от величины раскрытости (ширины) микротрещины делятся на очень узкие (капиллярные) 0,005-0,01 мм, узкие (субкапиллярные) 0,01-0,05 мм и широкие (волосные) 0,05-0,15 мм и более.

При исследовании трещиноватости пород, помимо густоты трещин и величины их раскрытости, следует изучать форму трещин (линейные или извилистые), степень выполнения их минеральным или битуминозным веществом и т. п.

По степени выполнения трещин различают открытые, частично выполненные и закрытые. Исследования различных лито логических разностей трещиноватых пород показали, что:

1) в песчаниках и алевролитах преобладают открытые микротрещины, реже появляются закрытые;

2) в глинах и аргиллитах также преобладают открытые микротрещины;

3) в мергелях имеются открытые и закрытые микротрещины;

4) в органогенных доломитовых известняках наряду с открытыми широко развиты закрытые микротрещины;

5) в доломитах наблюдается широкое развитие закрытых микротрещин с менее значительным распространением открытых; форма их извилистая, часто зазубренная.

Как известно, основными коллекторскими свойствами горной породы, характеризующими ее способность аккумулировать и отдавать флюиды, являются ее пористость и проницаемость. Пористость трещиноватой породы можно разделить на межзерновую и трещинную. Первая характеризует объем пустот между зернами (кристаллами) породы, вторая обусловлена объемом пустот, образованных трещинами. Объем полостей трещин называют трещинной пористостью (или иногда полостностью), а объем полостей трещин в единице объема трещиноватой породы - коэффициентом трещинной пористости (или полостности).

Кроме того, в карбонатных породах имеются пустоты, возникшие в породе за счет процессов растворения (каверны, микрокарстовые и стилолитовые полости). Таким образом, под общей пористостью трещиноватой породы следует понимать отношение суммарного объема пустот, содержащихся в породе, к объему этой породы.

Таким образом, при определении коллекторских свойств пород, очевидно, решающую роль имеет межзерновая пористость, а не трещинная.

В отличие от трещинной пористости, обычно мало влияющей на величину общей пористости породы, трещинная проницаемость фактически определяет величину общей проницаемости.

Трещины играют решающую роль в процессах фильтрации жидкости и газа в трещинных коллекторах. Это видно из того, что трещиноватые породы представлены обычно либо хрупкими, либо твердыми литологическими разностями, межзерновая проницаемость которых измеряется тысячными долями миллидарси. Между тем из таких пород в ряде отечественных и зарубежных месторождений получены весьма значительные притоки нефти и газа.

КОЛЛЕКТОРЫ НЕФТИ И ГАЗА (от cp.-век. лат. соllector — собиратель * а. oil and gas reservoirs; н. Erdol-Erd gasspeichergesteine, Erdol- und Gasspeicher; ф. roches-reservoirs de petrole et de gaz, roches-magasins de petrole et de gaz; и. rocas reservorios de gas у petroleo) — горные породы , способные вмещать жидкие, газообразные углеводороды и отдавать их в процессе разработки . Критериями принадлежности пород к коллекторам и служат величины проницаемости и ёмкости, обусловленные развитием , трещиноватости , кавернозности. Величина полезной для нефти и газа ёмкости зависит от содержания остаточной водонефтенасыщенности. Нижние пределы проницаемости и полезной ёмкости определяют промышленную оценку пластов , она зависит от состава флюида и типа коллектора.

Долевое участие пор, каверн и трещин в фильтрации и ёмкости определяет тип коллектора нефти и газа: поровый, трещинный или смешанный. Коллекторами являются породы различного вещественного состава и генезиса: , глинисто-кремнисто-битуминозные, и другие.

Коллекторские свойства терригенных пород зависят от гранулометрического состава , сортированности, окатанности и упаковки обломочных зёрен скелета, количества, состава и типа цемента. Эти параметры обусловливают геометрию порового пространства, определяют величины эффективной пористости, проницаемости, принадлежность пород к различным классам порового типа коллекторов. Минеральный состав глинистой примеси, характер распределения и количество её влияют на фильтрационную способность терригенных пород; увеличение глинистости сопровождается снижением проницаемости.

Коллекторские свойства карбонатных пород определяются первичными условиями седиментации , интенсивностью и направленностью постседиментационных преобразований, за счёт влияния которых развиваются поры, каверны, трещины и крупные полости выщелачивания . Особенности карбонатных пород — ранняя литификация , избирательная растворимость и выщелачивание, склонность к трещинообразованию обусловили большое разнообразие морфологии и генезиса пустот; они проявились в развитии широкого спектра типов коллекторов нефти и газа. Наиболее значительные запасы углеводородов сосредоточены в каверново-поровом и поровом типах.

Вулканогенные и вулканогенно-осадочные коллекторы нефти и газа отличаются характером пустотного пространства, большой ролью трещиноватости, резкой изменчивостью свойств в пределах месторождения. Особенность коллекторов заключается в несоответствии между сравнительно низкими величинами ёмкости, проницаемости и высокими дебитами скважин, вскрывающих залежи в этих породах. Наиболее часто встречаются трещинный и порово-трещинный типы коллекторов.

Глинисто-кремнисто-битуминозные породы отличаются значительной изменчивостью состава, неодинаковой обогащённостью органическим веществом; микрослоистость, развитие субкапиллярных пор и микротрещиноватость обусловливают относительно низкие фильтрационно-ёмкостные свойства. В некоторых разностях пористость достигает 15% при проницаемости в доли миллидарси. Преобладают трещинные и порово-трещинные коллекторы нефти и газа. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах.

Наиболее значительные запасы углеводородов приурочены к песчаным и карбонатным рифогенным образованиям. Выявление коллекторов нефти и газа проводится комплексом геофизических исследований скважин и анализом лабораторных данных с учётом всей геологической информации по месторождению. При изучении карбонатных коллекторов нефти и газа, кроме традиционных литологических и промыслово-геофизических методов, используют фотокаротаж, ультразвуковой метод, капиллярного насыщения пород люминофорами и другие методы.