Компоновки генеральных и ситуационных планов. и экологии производства

При разработке генеральных планов электростанций необходимо предусматривать:

  • функциональное зонирование территории с учетом технологических связей, санитарно-гигиенических и противопожарных требований, видов транспорта, грузооборота и очередности строительства;
  • рациональное устройство производственных, транспортных и инженерных связей на промышленной площадке, а также с населенным пунктом;
  • оптимальный выбор подъездных и пешеходных путей, обеспечивающих безопасное и с наименьшими затратами времени передвижение персонала между строительством и жилпоселком;
  • возможность расширения и реконструкции электростанции;
  • организацию единой системы обслуживания: культурно-бытового, коммунального, медицинского и др.;
  • создание единого архитектурного комплекса.
Объединение при проектировании КЭС главного корпуса с другими цехами и службами электростанции (химводоочисткой, пиковой котельной и др.) нерационально в связи с большой площадью и объемом главного корпуса, в котором невозможно расположить вспомогательные цеха с полным использованием объема здания.


Площадка электростанции по ее функциональному назначению должна быть разделена на четыре зоны: предстанционную, расположенную перед проходной и предназначенную для приема работающих и стоянки автомашин; производственную; подсобную и складскую. Если по технологическим, санитарно-гигиеническим условиям и противопожарным правилам представляется возможным, то промышленную, подсобную и складскую зоны следует объединять блокировкой промышленных объектов основного и производственного назначения с подсобно-вспомогательными и складскими.

Компоновка генплана КЭС. Приближение главного корпуса к источнику водоснабжения и снижение нулевой отметки главного корпуса для сокращения длины циркуляционных водоводов и сокращения расхода электроэнергии на техническое водоснабжение являются одними из основных требований при разработке плана застройки КЭС.

Объединенный вспомогательный корпус и другие подсобные производственные здания и сооружения располагаются со стороны постоянного торца главного корпуса, что позволяет сократить длину коммуникаций, которые подводятся к главному корпусу только со стороны постоянного торца. Такое размещение зданий позволяет расположить железнодорожные и автодорожные подъезды как к главному корпусу, так и к другим сооружениям.


Расположение ОРУ с фасадной стороны машинного зала, обеспечивающее минимальную длину электрических связей, противоречит требованию максимального приближения машинного зала к водохранилищу. Приближение главного корпуса к водохранилищу сужает площадку ОРУ и усложняет выводы линий электропередачи. Однако и такое решение не обеспечивает существенных снижения напора циркуляционных насосов и укорочения водоводов. В последних проектах КЭС главный корпус приближен к водохранилищу, а ОРУ перенесены за угольный склад или за постоянный торец главного корпуса. При этом электрические связи удлиняются, но резко сокращается длина циркуляционных водоводов и уменьшается разность отметок между конденсационным помещением и водохранилищем.

На примерах компоновки промплощадки КЭС, предназначенной для работы на угольном топливе, рассмотрим ряд вариантов взаимного расположения главного корпуса, угольного склада, водохранилища и ОРУ.

Вариант 1 (рис. 2.10) - ОРУ расположены между главным корпусом и водохранилищем; для выводов ЛЭП вправо и влево от электростанции предусмотрены коридоры. Между фасадной стеной машинного зала и берегом водохранилища необходима площадка шириной около 300 м. Этот вариант размещения ОРУ может оказаться целесообразным в тех случаях, когда площадка, отведенная для электростанции, имеет незначительные уклоны и удаление главного корпуса от водохранилища не приводит к значительному повышению отметки конденсационного пола и существенному увеличению расхода электроэнергии на циркуляционное водоснабжение, а также при условии сооружения между главным корпусом и ОРУ подводящего канала. Такое расположение канала удовлетворяет требованию сокращения длины водоводов и высоты подъема циркуляционной воды, а также облегчает связь трансформаторов, установленных у стены машинного зала, с ОРУ.

Наблюдения, проведенные на водоотводящих открытых каналах, расположенных между ОРУ и главным корпусом, показали, что парение воды канала не приводит к образованию гололеда на проводах и сооружениях. Обслуживание ОРУ не вызывает неудобств для эксплуатационного персонала, так как через канал перебрасывают легкие переходные мостки.

Этот вариант применяется во всех случаях, когда возможен подвод воды по каналу, проложенному параллельно машинному залу.

Вариант 2 (рис. 2.11) - ОРУ размешены со стороны постоянного торца главного корпуса. Для соединительных перемычек между повысительными трансформаторами, устанавливаемыми возле главного корпуса, и их ячейками на ОРУ между водохранилищем и трансформаторами предусмотрена полоса шириной около 50 м, а между фасадом машинного отделения и водохранилищем - около 60 м.

Такая компоновка сокращает расстояние от пруда охладителя до главного корпуса с 300 до 50 м. Очевидно, второй вариант целесообразен, если рельеф площадки имеет значительный уклон к водохранилищу. Но этот вариант требует площадей нужных размеров для размещения высокоразвитого ОРУ со стороны постоянного торца главного корпуса и дополнительных затрат на выполнение перемычки между трансформаторами и ОРУ, что компенсируется сокращением затрат на циркуляционные трубопроводы и земляные работы, а также снижением эксплуатационных расходов за счет уменьшения напора циркуляционных насосов.

Вариант 3 (рис. 2.12) - ОРУ размещены за угольным складом. Соединения повысительных трансформаторов с их ячейками на ОРУ выполняют с помощью перемычек, проходящих над главным корпусом. Перемычки подвешиваются на специальных опорах, установленных около повысительных трансформаторов и около порталов ОРУ, и на кронштейнах, укрепленных на дымовых трубах. Вместо дымовых труб могут быть использованы опоры, установленные на покрытии главного корпуса. Этот вариант целесообразен, если для электростанции отведена площадка, имеющая сильно выраженный рельеф, при котором оказывается существенным размещение главного корпуса возможно ближе к водохранилищу. Недостатком этого варианта является удаление ОРУ от центрального щита управления, расположенного в главном корпусе (около 360 м), что помимо удлинения и удорожания связей приводит к неудобству и усложнению обслуживания ОРУ из-за пересечения персоналом железнодорожных путей, достаточно интенсивно загруженных составами с углем.

Поэтому вариант не рекомендуется для КЭС, работающих на угольном топливе, применение его возможно для КЭС, работающих на газе или мазуте (например, Конаковская ГРЭС мощностью 2400 МВт), где нет разветвленных железнодорожных путей и угольного склада.

Вариант 4 (рис. 2.13) отличается от предыдущего варианта смещением угольного склада в сторону постоянного торца главного корпуса. При таком расположении угольного склада можно уменьшить расстояние от главного корпуса до ОРУ. Вариант 4 в эксплуатационном отношении имеет то преимущество, что под проводами перехода нет угольного склада, что позволяет снизить высоту опор со стороны ОРУ.

Выбор того или иного варианта размещения основных сооружений тепловой электростанции должен определяться на основе технико-экономических расчетов в соответствии с местными условиями и учетом капитальных затрат и эксплуатационных расходов.

Примеры использования приведенных вариантов компоновок для конкретных электростанций приведены ниже.

Генеральный и ситуационный планы Экибастузской ГРЭС-1. Топливное хозяйство и схема блокировки вспомогательных зданий, сооружений и служб позволили сократить количество зданий и сооружений, расположенных на генеральном плане (рис. 2.14). Вспомогательные службы объединены в одном корпусе (ОВК), с едиными бытовыми помещениями и с закрытой площадкой для центральных ремонтных мастерских. Отдельно, вне объединенного корпуса, запроектированы только те сооружения, блокировка которых нецелесообразна или недопустима по санитарным и противопожарным условиям эксплуатации электростанции.

Компоновка основной площадки Экибастузской ГРЭС-1 принята по варианту 2 взаиморасположения. Вынос за ограду промплощадки и расположение рядом с угольным складом мазутно-масляного хозяйства улучшает санитарные и противопожарные условия эксплуатации электростанции. К недостатку такого расположения можно отнести необходимость туннельной прокладки мазутомаслопроводов под железнодорожными путями и удлинение их трасс.

В итоге рациональной блокировки и компоновки зданий и сооружений Экибастузской ГРЭС-1 генеральный план имеет коэффициент застройки основной площадки 20% и четкое разделение зон промплощадки, ОРУ и топливного хозяйства. Все сооружения Экибастузской ГРЭС-1 потребовали общей площади отчуждения земель в 5,5 тыс. га. Жилищный и культурно-бытовой комплексы располагаются на территории города, там же располагается база ОРС ГРЭС-1 и база Главснаба. Связь ГРЭС-1 с городом осуществлена железнодорожным и автомобильным транспортом по специально построенным шоссейной и железной дорогам.

Генеральный план Березовской ГРЭС-1 (рис. 2.15) предусматривает разделение всей площади строящейся Березовской ГРЭС-1 на зоны, в которых располагаются сооружения одинакового функционального назначения. В первой зоне располагаются основные сооружения: главный корпус, обращенный машинным залом к водохранилищу, между ними - открытая установка трансформаторов 230 и 500 кВ, открытый отводящий канал и открытый подводящий канал технического водоснабжения с блочными насосными; инженерно-лабораторный корпус; объединенно-производственный корпус - с химводоочисткой, ЦРМ; материальный склад; во второй зоне - пускоотопительная котельная с дымовой трубой, масло-мазутохозяйство и пожарное депо; в третьей зоне - угольный склад с трактом топливоподачи и экипировочный транспортный блок.

Топливо с Березовского карьера открытой разработки до угольного склада электростанции подается конвейерными лентами длиной 14,5 км.

Технико-экономические показатели основной площадки и площади отчуждения земли для строительства электростанции даны в табл. 2.8 и 2.9. Общая площадь отчуждаемых земель 5184 га.

Генеральный план Костромской ГРЭС (блок 1200 МВт) (рис. 2.16). Первая очередь Костромской ГРЭС имеет мощность 2400 МВт (8 блоков по 300 МВт). Расширение осуществлено одним блоком мощностью 1200 МВт, расположенным на территории первой очереди электростанции.

Главный корпус блока 1200 МВт расположен параллельно главному корпусу первой очереди. В разрыве главных корпусов расположено здание административно-бытового комплекса, около дымовых труб блока 1200 МВт и первой очереди расположена химводоочн-стка. Параллельно машинным залам блока 1200 МВт и первой очереди проходит открытый подводящий канал технического водоснабжения с блочной насосной для блока 1200 МВт и двумя насосными первой очереди. За открытым каналом расположены ОРУ 500 и 220 кВ. За железнодорожными путями расположены очистные сооружения, мазутное хозяйство и маслохозяйство с насосными и железнодорожными путями фронта слива мазута и масла, а также площади для шламоотвалов. В общем осуществлен принцип зонирования территории основной площадки по функциональному назначению. Генплан соответствует 1 варианту расположения основных сооружений для КЭС.

Схема объектов электростанции приведена на рис. 2.17. Общая площадь отчуждения земель для блока 1200 МВт составляет 718,4 га, из них количество отчуждаемых земель, пригодных для сельскохозяйственных нужд, составляет: пашни - 267,4 га, выгоны - 14,3 га, луга - 204 га, леса - 83 га.

Как видно из табл. 2.8, до 50 % и более отведенной земли для сооружения конденсационных электростанций, работающих на твердом топливе, занимается под золоотва-лы и водохранилища. На третьем месте находится жилпоселок и на четвертом - основная промплощадка и примерно наравне с ней стройбаза. Дальнейшее сокращение площадей под жилье и стройбазу может быть обеспечено повышением этажности застройки жилпо-селка и переходом на районные производственные комплектовочные базы. Эти мероприятия по расчету должны уменьшить отвод земли для жилпоселка и стройбазы не менее чем на 50 % (пример стройбазы Экибастузских ГРЭС-2, -3, -4 и Березовской ГРЭС).


Сложнее обстоит дело с водохранилищами. Так как естественных источников технического водоснабжения для крупных КЭС становится все меньше и использовать природные условия для создания глубоких (до 20 м) водохранилищ в местах технико-экономически выгодного месторасположения электростанции удается редко.

Генеральный план ТЭЦ

Генеральным планом вся территория строящейся ТЭЦ делится на зоны, в которых располагаются сооружения одинакового функционального назначения. Так, в первой зоне (зоне основных сооружений) размещаются: главный корпус, дымовые трубы, пусковая котельная, градирни с насосной оборотного водоснабжения, химводоочистка, инженерно-бытовой корпус и столовая; во второй зоне (зоне вспомогательных сооружений) - ремонтные мастерские, материальный склад, компрессорная, склад взрывоопасных материалов, ГРП и перекачивающие насосные станции; в третьей зоне предусмотрено сооружение мазутного хозяйства, очистных сооружений. фекальных и замазученных вод и комплекса насосной станции горячего водоснабжения; в четвертой зоне - комплекс зданий и сооружений железнодорожной станции ТЭЦ и пожарное депо.

Строительно-монтажная база, как и для КЭС, располагается со стороны временного торца главного корпуса и включает в себя административно-бытовой корпус, бетонно-растворный завод, складское хозяйство со строительно-монтажными площадками, мастерские строительного управления и субподрядных организаций, а в некоторых случаях и автохозяйство со стоянкой машин и заправочной станцией, складом горючих и смазочных материалов.

Обычно ТЭЦ сооружают на территории промышленного предприятия или города, в непосредственной близости от цехов, потребляющих теплоту, или жилых массивов. Основной задачей при размещении зданий и сооружений ТЭЦ является выбор наиболее экономичных линий электропередачи и тепловых сетей, железных и автомобильных дорог, а также обеспечение возможности выделения в дальнейшем ТЭЦ в самостоятельное предприятие (при первоначальном размещении ТЭЦ на общей площадке с предприятием - потребителем тепловой энергии).

При разработке плана застройки площадки ТЭЦ необходимо предусматривать максимальное кооперирование с близлежащими предприятиями объектов железнодорожного транспорта, автомобильных дорог, жилого поселка, надземных и подземных коммуникаций, золоотвала, очистных сооружений. В связи с тем что на ТЭЦ циркуляционная вода в конденсаторы турбин подается обычно из градирен, вопрос о приближении ТЭЦ к берегу реки или пруда-охладителя не стоит так остро, как при проектировании площадки КЭС.

В качестве примера застройки промплощадки ТЭЦ, работающей на мазуте, рассмотрена компоновка генерального плана Ростовской ТЭЦ-2 (рис. 2.18).

В проекте в достаточной мере использованы блокировка отдельных зданий и широкое кооперирование с другими близлежащими объектами города. Так, на территории ТЭЦ нет распределительного устройства, для этой дели использовано распределительное устройство, расположенное в городе. Принятое расположение зданий и сооружений обеспечивает хорошую технологическую связь между ними и компоновку основной площадки с коэффициентом застройки 25 %. Однако блокировка зданий осталась недостаточной, что характеризуется наличием на основной площадке 23 зданий. Кроме того, из общего отвода земли на основную площадку, равную 59 га, количество отчуждаемых земель, пригодных для сельского хозяйства, составляет 23,97 га пашни и 6,86 га выгонов. Данные, характеризующие генеральный план Ростовской ТЭЦ-2 и генпланы других ТЭС, приведены в табл. 2.9.



Несмотря на неблагоприятные условия местности компоновочные решения генерального плана позволили достигнуть высокого коэффициента использования территории, равного 70%, а раскрытие продольного фасада главного корпуса в сторону города за счет переноса градирен на сторону котельной способствовало архитектурной выразительности крупного промышленного объекта.

Широкая блокировка, являющаяся примером для применения, выполнена при проектировании газомазутной ТЭЦ. На рис. 2.19 приведены варианты общего вида газомазутной ТЭЦ до и после блокировки. После блокировки площадь застройки уменьшена на 15,5-9,6=5,9 га, количество зданий уменьшено с 13 до 5.

При сопоставлении показателей отечественных и зарубежных ТЭС необходимо иметь в виду, что принципы формирования промпло-щадок зарубежных ТЭС отличаются набором зданий и сооружений вспомогательных и ремонтных служб. Так, в состав промплощадок зарубежных ТЭС входят только здания и сооружения основного производства, что резко сокращает территорию промплощадки в ограде, количество зданий и сооружений (отсутствуют ремонтно-механические мастерские, складское хозяйство, азотно-кислородная установка, ацетиленовая станция со складом карбида и т. д.). При включении в состав промплощадок зарубежных ТЭС вспомогательных зданий и сооружений показатели по генеральному плану будут мало отличаться от показателей отечественных ТЭС.

Отличие в показателях может также объясняться климатическими условиями, применением низкокалорийного и многозольного топлива, требующего больших площадей под склад топлива, наличием ремонтных площадок в главном корпусе и т. п.

Выбор площадки и генплана ТЭС

1 Выбор площадки ТЭС

2 Генплан ТЭС

Выбор основного энергетического оборудования

1 Выбор паровых турбин

2 Выбор структурной технологической схемы

3 Выбор парогенераторов

Компоновка главного корпуса КЭС

1 Плановая компоновка главного корпуса

2 Высотная компоновка главного корпуса

2.1 Турбинное отделение

2.2 Котельное отделение

2.3 Высотная компоновка бункерно-деаэраторного отделения

2.4 Выбор стропильных конструкций и назначение размеров сечений колонн и ригелей каркаса главного корпуса

Крановое оборудование главного корпуса

1 Выбор количества и грузоподъемности кранов в турбинном, котельном и деаэраторном отделениях

Оборудование газовоздушного тракта

1 Дутьевые вентиляторы и дымососы

2 Золоулавливание и золоудаление

3 Дымовые трубы

4 Молниезащита главного корпуса

Сооружения и оборудование топливоподачи и системы пылеприготовления

1 Разгрузочные устройства, дробилки и ленточные конвейеры

2 Топливные склады. Размораживающие устройства

3 Оборудование системы пылеприготовления

1 Сооружения мазутного, масляного и Газового хозяйства

2 Сооружения технического водоснабжения

3 Сооружения электрической части

4 Сооружения угольного топливного хозяйства

5 Подсобно - производственные здания и сооружения

Сооружения угольного склада

1 Общая схема и оборудование топливного хозяйства пылеугольной электростанции

2 Открытые склады твердого топлива. Общие сведения


ЗАДАНИЕ

Для ГРЭС, основные параметры для проектирования которой приведены ниже таблицы, выполнить проектирование технологической части. В проекте следует использовать некоторые данные, которые были получены при проектировании электрической части.

Таблица 1 - Исходные данные

Число и мощность блоков ГРЭС-10U1U2СистемаПотребители на U1ScXcLвлSpез.PmaxPmincosφшт×МВткВкВМВАо.е.км%МВтМВто.е.4x30011033045000,920074002900,89Место сооружения станцииЭнергосис-темаОсновное топливоРезервное топливоСистема водоснабженияQ, ГДж/чУкраинаУкрэнергоВолынский каменный угольМазутОборотная-СпецвопросСооружения угольного склада

Проект должен содержать следующие разделы:

1. Выбор площадки и генплана ГРЭС

2. Выбор основного энергетического оборудования

3. Высотная компоновка главного корпуса

4. Выбор кранового оборудования главного корпуса

Выбор оборудования газовоздушного тракта

Оборудование топливоподачи и системы пылеприготовления

Вспомогательные сооружения тепловой электростанции

1. Выбор площадки и генплана ТЭС

1 Выбор площадки ТЭС

Выбранное место для сооружения КЭС - площадка в 20 километрах от города Луцка. Вблизи от площадки имеются овраги, которые будут использоваться как места для золоотвалов на расчетный срок работы электростанции 25 лет. Станция будет распологаться вблизи Львовско-Волынского бассейна, который расположен на западе Украины,откуда и будет поставлятья уголь для данной КЭС. Такое месторасположение,вблизи добычи заданного Волынского угля, позволит сэкономить дополнительные денежные средства.

Расположение КЭС показано на карте Украины

Рисунок 1.1-Расположение КЭС на карте Украины.

Площадка электростанции находится недалеко от железнодорожных магистралей, по которым предполагается подвоз топлива; автомобильных дорог и жилых поселков. Так же обеспечивается удобный вывод линий электропередачи высокого напряжения и электрических кабелей, трубопроводов пара, горячей воды, санитарной и ливневой канализации.

1.2 Генплан ТЭС

Генеральный план (генплан) электростанции представляет собой план размещения на основной производственной площадке электростанции ее основных и вспомогательных сооружений.

Генплан электростанции включает следующие производственные и подсобные здания, сооружения и устройства: главный корпус, золоуловители, дымососы, фильтры, дымовые трубы, повышающие трансформаторы; устройства водоснабжения, в данном случае пруд - охладитель; топливного хозяйства и золоудаления; химическую очистку добавочной воды; масляное хозяйство; лаборатории и мастерские; служебные помещения.

Главный корпус имеет временную торцевую стену, на случай расширения станции, поэтому рядом с этой стеной ничего не устанавливается.

К помещениям машинного зала и парогенераторов, к ОРУ и повышающим трансформаторам, к приемно-разгрузочному устройству топливоподачи и складу топлива, к сливному устройству мазутного хозяйства, к складам масла и других материалов и оборудования обеспечен подвод железнодорожных путей и автомобильных дорог.

Пруд - охладитель расположен за сооружениями электрической части. Сбросной канал проходит между ОРУ и главным корпусом, и в пределах электростанции выполняется закрытым.

Основной подход к главному корпусу электростанции выполнен со стороны его постоянной торцевой стены. С этой стороны устроен вход через проходную и въезд на территорию электростанции. Со стороны постоянного торца главного корпуса размещают также объединенный вспомогательный корпус (ОВК), инженерный корпус со столовой, соединяемый с главным корпусом закрытой переходной галереей для персонала на уровне основного обслуживания агрегатов электростанции.

С восточной стороны от дымовых труб располагаются: центральный - материальный склад (ЦМС), ацетилено-кислородная станция. На территории ОРУ расположена компрессорная с примыкающими к ней ресиверами кислорода и водорода и цех химводоочистки.

На территории электростанции предусмотрена автостоянка для обслуживающего персонала.

В настоящее время при технико-экономической оценке генпланов согласно СНиП «Генеральный план промышленных предприятий» используется показатель минимальной плотности застройки площади.

Показатель минимальной плотности застройки площади, %

где Sзд. соор. - площадь застройки зданиями и сооружениями, Га;

Sпл. - площадь отведенной земли под электростанцию, Га.

Площадь застройки зданиями и сооружениями, Га;

Площадь ГРЭС в пределах ограды занимает Sпл = 20 Га.

Площадь застройки зданиями и сооружениями по формуле (1.2), Га;

По формуле (1.1) определим показатель минимальной плотности застройки площади, %

Для более полной оценки используем показатель съема продукции, МВт/Га

где Руст.ЭС - установленная мощность ТЭЦ, МВт;

Sпл - площадь отведенной земли под электростанцию, Га.

Удельный показатель общего отвода земель, Га/МВт

где Sоб - общая отведенная площадь, Га.

Общая отведенная площадь, Га

где Sпос. - площадь жилого поселка, Sпос = 100 - 200 Га;

Sзш - площадь золошлакоотвалы, Sзш = 180 Га;

SЛЭП - площадь коридора ЛЭП, Га.

Удельный показатель общего отвода земель по формуле (1.4), Га/МВт

2. Выбор основного энергетического оборудования

Основным энергетическим оборудованием являются парогенераторы, турбины и электрогенераторы.

При проектировании ГРЭС должны быть выбраны:

число и тип паровых турбин;

начальные параметры пара;

число и тип парогенераторов;

структурные технологические схемы.

2.1 Выбор паровых турбин

Тип и мощность устанавливаемых турбин должны обеспечивать необходимое соотношение электрического потребления. Параметры пара из отборов турбин должны соответствовать требованиям потребителей тепла.

Принимаем для данной станции следующие турбины:

Четыре турбины К-300-240 номинальная мощность которых составляет 300 МВт, а начальное давление 24 МПа.

Параметры турбин приведены в таблице 2.1.

Таблица 2.1 - Справочные данные турбин

Тип турбины по ГОСТ 3618-76Техническая характеристикаГабариты, мМасса, тмощность ном/макс, МВтМакс. расход пара, т/чдавление на входе, МПатемпература на входе, ºСдавление в конденсаторе, МПарасход охлаждающей воды, м3/чотметка обслуживаниядлина без генераторадлина с генераторомнаибольшая монтажнаяобщая турбиныв конденсационном режимев режиме регулируемого отбораК-300-240-2300/320950─23,545403,43348009,6223957,5625

В комплект турбины входит вспомогательное оборудование. Справочные данные приведены в таблицах 2.2,2.3,2.4

Таблица 2.2 - Справочные данные конденсатора К-15 240

ХарактеристикиК-15 240Количество на 1 турбину, шт.1Расчетный вакуум, кПа3,43Расчетная температура охлаждающей воды, °С12Расход охлаждающей воды, м3/ч34800х1Гидравлическое сопротивление, кПа39Длина трубок, м8,90Масса без воды, т385

Таблица 2.3 - Теплообменное оборудование для турбин К-200-130

ХарактеристикиПНДПВДИспарительМарка (тип)ПН-550-26ПВ-1 700-380И-250-1Количество на 1 турбину, шт.431Температура, °С400335-Диаметр, м162426802844Высота, м5560886010645Масса без воды, т11,492,130,6Масса с водой, т20,7127-

Таблица 2.4 - Технические данные деаэратора ДП - 1000-4

ХарактеристикиДП-1000-4Количество на 1 турбину, шт.1Номинальная производительность, кг/с278Рабочая температура, °С164Диаметр колонки, м2,40Высота колонки, м4,50Диаметр бака, м3,44Емкость бака, м3120

Для преобразования механической энергии, вырабатываемой турбиной, в электрическую устанавливаем турбогенератор ТГВ-300-2. Справочные данные приведены в таблице 2.5.

Таблица 2.5 - Справочные данные турбогенератора

ХарактеристикиТГВ-300-2Номинальная мощность, МВт300Скорость вращения, об/мин3000Длина по верху, м40,95Длина по подошве, м41,35Ширина по оси ЦНД, м11,00Ширина по подошве, м13,00Полная высота, м13,88Отметка обслуживания, м9,60Масса общая (без возбудителя), т250

2.2 Выбор структурной технологической схемы

При проектировании КЭС применятся следующая схема паропроводов, соединяющих котлы с турбинами.

Блочная схема предусматривает, что котельные агрегаты соединены только с определенной турбиной, которую они и обеспечивают паром. При этом установка резервных котлов исключается. В этом случае электростанция состоит из группы независимых блоков. Блочная схема более проста, имеет минимальную длину паропроводов, минимальное количество арматуры, меньшую металлоемкость и соответственно, меньшую стоимость и повышенную надежность. Она допускает расширение станции с установкой блоков любой мощности на разные параметры пара. Блочная схема предъявляет повышенные требования к надежности работы всех элементов оборудования блока. На блочной ТЭС или в энергосистеме необходимо иметь резерв, равный или больший мощности крупного блока, установленного на станции.

Блочная схема является единственно возможной при наличии промежуточного перегрева пара.

Блочная схема требует соблюдения соответствия между расходом пара на турбину и паропроизводительностью котельных агрегатов, что имеет место на КЭС

2.3 Выбор парогенераторов

Выбор параметров пара и количества парогенераторов определяется сделанным ранее выбором турбин и структурных технологических схем соединения основного энергетического оборудования электростанции.

Расчетная производительность котлоагрегата, т/ч,

где Dтурб - максимальный расход пара на турбину, т/ч.

Расход пара на собственные нужды и утечки.

Учитывая параметры пара и заданное топливо (Волынский каменный уголь) выбираем котлоагрегаты типа ПП-1000-25КЖ

Параметры парогенераторов приведены в таблице 1.2

Таблица 2.6 - Данные парогенератора.

Марка котла по ГОСТ 3619 - 82 ЗаводскаяТопливоКомпоновкаПараметры параГабариты котла, мОбщая масса котла, тВарианты установки с турбинамиПО-изготовительпроизводительность т/чдавление, Мпа (кгс/см2)температураСширинаГлубинаотметка верха котлаПП-1000-25КЖ ТПП-312АКаменный Уголь ГСШПрямоточный однокорпусной10005,0 (255)54518,623,652,04553К-300-240Красный котельщик

3. Компоновка главного корпуса КЭС

1 Плановая компоновка главного корпуса

При разработке плановой компоновки главного корпуса, необходимо решить вопрос о количестве отделений и их взаимном расположении.

Для определения плановых и высотных размеров главного корпуса требуется установить габариты и массу основного и вспомогательного энергетического оборудования, условия их монтажа, эксплуатации и ремонта. Для каждого вида оборудования необходимо определить основные габаритные (установочные) размеры, общую и монтажную массу наиболее тяжелого узла. Размеры пролетов и отделений главного корпуса можно принимать в соответствии с габаритами и компоновкой оборудования.

Принимаем поперечное размещение турбоагрегатов в машинном зале с совмещением бункерного и деаэраторного отделений в одном промежуточном помещении.

Пролет турбинного отделения при поперечном расположении агрегата

где Lта - длина турбоагрегата, м.

Пролет котельного отделения с котлами на пылеугольном топливе

где DК - глубина котла, м.

Все пролеты главного корпуса после их предварительно определения в соответствии с Единой модульной системой (ЕМС) в строительстве следует принять кратными 3 м.

Тогда LТО = 48 м и LКО =48 м

Пролет бункерно-деаэраторного отделения примем равным LБДО = 12 м.

Примем шаг колонн Вк = 12 м.

Длина технологической секции должна быть кратна шагу колонн Вк, а при поперечном расположении турбоагрегата определяется его шириной с учетом вспомогательного оборудования.

Примем LТС = 36 м.

Количество и размеры монтажных площадок на различных ТЭС могут значительно отличаться из-за различного использования свободной площади в турбинном отделении на отметках пола и обслуживания турбоагрегатов.

Длина монтажной площадки на каждые 4 агрегата

Принимаем две монтажные площадки по 12 м.

Общая длина главного корпуса ГРЭС составит:

Рисунок 3.1-Плановая компоновка главного корпуса

3.2 Высотная компоновка главного корпуса

Для каждого отделения главного корпуса высотная компоновка определяется, прежде всего габаритами и размещением оборудования, условием его монтажа и эксплуатации, а также выбором отметки пола по отношению к планировочной отметки.

3.2.1 Турбинное отделение

Краны турбинного отделения должны обеспечить подъем статора генератора.

Масса статора турбогенератора ТГВ-300-2 составляет 266т. В турбинном отделении устанавливаются 2 мостовых крана типа КС - 160/32 с грузоподъемностью основного крана 160т и вспомогательного 32т.

Высота турбинного отделения над отметкой обслуживания определяется условиями монтажа и эксплуатации основного и вспомогательного оборудования: генератора, турбины и конденсатора, подогревателей высокого и низкого давлений. Отметку обслуживания турбоагрегатов Нобс. примем равной 9,6 м.

Определим высоту подъема, отметок головки рельса и подкрановой консоли

где Ноб - максимальное значение из высот ПВД и ПНД

Нстр - принимаем ориентировочно равным диаметру ПВД или ПНД, м;

Нзап = 0,5 м.

Определим высоту подъема, м

Отметка головки рельса Нг.р в первом приближении может быть вычислена

Определим отметку подкрановой консоли, м

Затем окончательно примем отметку подкрановой консоли Нп.к с учетом ЕМС как ближайшее большее значение по высоте кратное 300 мм.

После этого можно уточнить окончательное значение отметки головки рельса, м,

По вышеприведенным формулам (3.6),(3.7) определим отметку головки рельса и отметку подкрановой консоли, м

Примем м.

Определим высоту колонны, м

По найденному значению отметка верха колонны окончательно принимается с учетом ЕМС как ближайшее большее значение, кратное 300 мм (или 150 мм).

Примем м.

Тогда высота верхней части колонны по отношению к отметке подкрановой консоли определяется,

Высота нижней части колонны, м

где = 0,6 - 1,0 м - заглубление базы колонны ниже уровня пола, м.

Полная высота колонны,

Высота сечения верхней части колонны назначается в зависимости от шага колонн и грузоподъемности крана.

При шаге Вк = 12м и Qк = 100т высота сечения верхней части колонны

Привязка колонны к продольной оси а зависит от высоты сечения верхней части колонны

Высота сечения нижней части колонны,

где ml - привязка оси подкрановой балки и рельса к оси колонны, м;

а - привязка колонны к продольной оси, м.

Привязку оси подкрановой балки и рельса к оси колонны, м;

где - вынос моста крана.

Определим привязку оси подкрановой балки и рельса к оси колонны, м;

Высота сечения нижней части колонны, м

Условие жесткости для верхней и нижней частей колонны

Проверим условие жесткости для верхней и нижней частей колонны

Условие жесткости для верхней и нижней частей колонны выполняется.

После окончательного выбора размеров сечения колонны и привязок к ним осей подкрановых балок слева ml и справа m2 можно определить требуемый пролет крана, м,

Рисунок 3.2 - Определения основных габаритных размеров ТО

тепловой электростанция энергетический деаэраторный

3.2.2 Котельное отделение

Исходными размерами для высотной компоновки котельного отделения является высота котлоагрегата и отметки пола.

Схема для определения основных габаритных размеров КО представлена на рисунке 3.2.

В котельном отделении устанавливаются 2 мостовых крана типа КМ - 50/10 с грузоподъемностью основного крана 50т и вспомогательного 10т.

В котельном отделении весь объем ремонтных работ осуществляется во внутреннем пространстве котла и в прилегающих к нему с внешней стороны ремонтных зонах таким образом, что перемещать грузы или элементы над самим котлом не требуется. В соответствии с условиями безопасной эксплуатации грузоподъемных кранов расстояние от отметки площадки обслуживания на верху котла до низа моста крана должно быть не менее 2100 мм, а расстояние от верха любой выступающей части котла до крюка крана в его самом верхнем положении должно быть не менее 400 мм.

Отметка головки рельса,

где - высота обслуживания котла

Отметка подкрановой консоли,

С учетом ЕМС принимаем.

Уточняем окончательное значение отметки головки рельса,

Приму с четом ЕМС

Определяем отметку верха колонн,

Высота верхней части колонны по отношению к отметке подкрановой консоли определяется,

Высота нижней части колонны,

Полная высота колонны,

Высота сечения верхней части колонны назначается в зависимости от шага колонн и грузоподъемности крана QК. При шаге ВК=12 м и QК=50 т принимаем hВ.К=750 мм.

Высота сечения нижней части колонны, м,

где а- привязка колонны к продольной оси, при = 500 мм принимаем; - привязка оси подкрановой балки и рельса к оси колонны.

Принятые сечения колонн проверяются по условию жесткости колонны.

Проверяем выполнение условий жесткости для верхней и частей колонны,

Условие жесткости для верхней и нижней части колонны выполняется.

Требуемый пролет крана, м,

Рисунок 3.3 - Схема для определения основных габаритных размеров КО.

3.2.3 Высотная компоновка бункерно-деаэраторного отделения

Схема бункерно-деаэраторного отделения представлена на рисунке 3.4.

Деаэраторное отделение входит в состав главного корпуса практически каждой электростанции.

Исходными данными для высотной компоновки деаэраторного отделения являются: отметка пола 1-го этажа, количество этажей, отметка перекрытия деаэраторного помещения и габариты деаэратора.

Отметка низа стропильных конструкций или верха колонны, м:

где Нп.д - отметка перекрытия под деаэратор, Нп.д =22,2 м;

Нф.д - высота фундаментной рамы, Нф.д = 0,5 м;

Нд - высота деаэратора, Нд =4,5 м;

Нк - высота крана от верхнего положения крюка до низа подвесных монорельсов, Нк =1 м;

Нстр- высота стропов, принимается равной диаметру колонки деаэратора,

Нстр = 2,4м;

hп.м - высота подвесных балок (монорельсов), hп.м = 0,2 м.

Рисунок 3.4- Компоновка деаэраторного отделения.

3.2.4 Выбор стропильных конструкций и назначение размеров сечений колонн и ригелей каркаса главного корпуса

Главный корпус проектируемой КЭС является зданием каркасного типа. Каркас здания выполняется из сборного железобетона. Стены выполняют функцию ограждения.

Фермы принимаем унифицированные стальные марки ТФ-48. Характеристики ферм приведены в таблице 3.1.

Таблица 3.1 - Фермы стропильные

Характеристика конструкцииРазмеры и масса конструкций, ммНаименование конструкцииТип (марка)Пролет, мДлинаВысота на конькеВысота на опореТол-щинаСтроительный подъемМасса фермы, тФерма стропильная стальнаяТФ - 48484750045002100-20010,35ТФ - 484847500450020010,35

Все элементы колонн выполнены двутаврового сечения

Таблица 3.2 - Паспортные данные колонн

Характеристика колоннРазмеры сечения, ммНаименование сечения и материалКолоннаМаркаВысотаШирина полкиТолщина ПолкиТолщинаСечение железобетонной колонны двутавровоеАК 1561500600200200Б,ВК 2062000600300200ГК 2462400600300200

4. Крановое оборудование главного корпуса

4.1 Выбор количества и грузоподъемности кранов в турбинном, котельном и деаэраторном отделениях

В главном корпусе электростанции краны предусматриваются для монтажа и ремонта оборудования и по характеру работы относятся к кранам легкого режима работы.

Количество и грузоподъемность кранов в турбинном отделении выбираются исходя из максимальной массы монтажных узлов турбоагрегата (ротора и статора), а также общего количества обслуживаемых агрегатов.

В котельном отделении устанавливаются два крана для монтажа и обслуживания котлоагрегатов и другого оборудования. При этом в качестве основного грузоподъемного механизма принимается мостовой кран с грузоподъемностью, соответствующей наибольшей монтажной массе оборудования в котельном отделении.

Устанавливаем два мостов кран типа КС - 160/32 в турбинном отделении и 2 мостовых крана типа КС - 50/10 в котельном отделении.

Параметры кранов приведены в таблице 4.1

Таблица 4.1 - Крановое оборудование главных корпусов

Мостовой кранГабаритные размеры, мМасса, тМаркаГрузоподъемность, т Основного/вспомогательногоНkhkpB2hpТележкиКрана общаяКС - 160/32160/324,51,950,50,1749174КМ - 50/1050/104,50,70,40,1532121

5. Оборудование газовоздушного тракта

5.1 Дутьевые вентиляторы и дымососы

Так как производительность котлов более 500 т/ч, то устанавливаем по два дымососа и вентилятора с подачей каждого по 50 % от общей производительности.

Расход воздуха, засасываемого дутьевым вентилятором, при максимально длительной производительности котлоагрегата, м3/ч

где α - коэффициент избытка воздуха, α = 1,2 - 1,6;

Теоретически необходимый расход воздуха для полного сгорания 1 кг топлива, м3/кг;

Вчас - часовой расход топлива при максимально длительной нагрузке котла, кг/ч;

Температура воздуха на входе в дутьевой вентилятор, .

Теоретически необходимый расход воздуха для сжигания 1 кг твердого топлива определяется по его элементарному составу, м3/кг

где Ср, Sр, Нр, Ор - показатели элементного состава используемого топлива на рабочую массу, %.

Расчетный расход топлива на работу котла, т/ч,

где D - номинальная производительность котла, т/ч;

i пв - теплосодержание питательной воды, /кг;

Qрн - низшая удельная теплота сгорания рабочей массы, ккал/кг;

ηбр - КПД котлоагрегата.

Характеристика основного топлива приведена в таблице 5.1

Таблица 5.1 - Характеристики Волынского каменного угля

Вид топливаТехнические показателиKлоГорючая массаWрАсSгкSгорVгCгHгNгOгМДж\кгКкал\кгВолынский каменнй уголь (ГСШ,ГР)10182,51,23923,1555301,279,55,21,310,3

Определим показатели элементарного состава используемого топлива:

Определим теоретически необходимый расход воздуха по формуле (5.2)

Определим КПД котла по формуле

где - потеря тепла с уходящими газами (4 - 7)%;

Потеря тепла от химической неполноты сгорания топлива (1 - 3)%;

Потеря тепла от механической неполноты сгорания топлива (0,5 - 5)%;

Потеря тепла от наружного охлаждения (0,2 - 1)%;

Потеря тепла с физическим теплом шлаков (0,5 - 3)%.

Определим часовой расход топлива на работу котла, по формуле (5.3)

Выбор дымососов производится исходя из величины расхода уходящих газов при максимально длительной нагрузке котла, м3/ч,

где Vог - теоретическое количество уходящих газов в расчете на 1 кг топлива при его полном сгорании, м3/кг;

αух - коэффициент избытка воздуха в уходящих газах, αух = 1,15 - 1,25;

Вчас - часовой расход топлива на котлоагрегат, кг/ч;

tд - температура дымовых газов перед дымососом, tд = 120 - 150 °С.

Теоретическое количество уходящих газов при сжигании 1 кг топлива, м3/кг

где - коэффициент избытка воздуха в топке, = 1,2 - 1,25;

Низшая удельная теплота сгорания рабочей массы, ккал/кг.

Расход уходящих газов при максимально длительной нагрузке котла, м3/ч,

Номенклатура дутьевых вентиляторов и дымососов приведена в таблице 5.2.

Принимаем 2 дутьевых вентилятора типа ВДН-20 и 2 дымососа типа ДН-24×2-0,62.

Таблица 5.2 - Номенклатура дутьевых вентиляторов и дымососов

Тип оборудованияТипоразмерПроизводи-тельность, м3/чПолное давление, кПаТемпе-ратура газа, °СКПД, %Частота вращения, об/минМощность, кВтДутьевой вентиляторВДН-24х2-II575730867351000ДымососДОД-411080/12203,2/4,2130843751140/1880

5.2 Золоулавливание и золоудаление

При паропроизводительности котлоагрегатами 420 т/ч и выше рекомендуется устанавливать электрофильтры. В основном применяют трех - и четырех горизонтальные электрофильтры степень очистки дымовых газов, КПД в которых может достигать 96 - 98 %.

Расход летучей золы, поступающей в золоуловитель, зависит от расхода, вида и способа сжигания топлива.

Расход летучей золы, кг/ч

где - доля золы в недожоге и уносе принимаем равным 0,85 для пылеугольной топке, с фронтальными горелками %;

Зольность топлива на рабочую массу, %;

Потери тепла с механическим недожогом, = 1 - 2,5%.

Количество летучей золы, выбрасываемой в дымовую трубу каждым котлоагрегатом, кг/ч

где ηзу - полный КПД золоулавливающего аппарата.

Количество летучей золы, кг/ч

где n - число котлов, шт.

На КЭС, как правило, применяется схема совместного гидрозолошлакоудаления на золоотвал с помощью багерных насосов.

В багерной насосной устанавливаем 3 багерных насоса: один рабочий, один резервный, один в ремонте. Для каждой багерной насосной применяется один резервный пульпопровод.

Количество котлов, присоединенных на обслуживание одной багерной насосной, зависит от паропроизводительности котлов и вида топлива.

Часовая производительность системы золошлакоудаления на один котел, кг/ч,

Диаметр шлакозолопровода, м

где Q - расчетный расход пульпы, м3/ч;

υ - расчетная скорость потока пульпы, υ = 1,7 - 1,8, м/с.

Расчетный расход пульпы, м3/ч

где Мшз, Мв - соответственно расход шлака, золы и воды, т/ч;

γшз, γв - удельный вес шлака, золы и воды, т/ч.

Расход шлака и золы, кг/ч;

где n - число котлов, шт.

Расход воды, кг/ч

Производительность системы золошлакоудаления на один котел, по формуле (5.10)

Расход шлака и золы определим по формуле (5.13)

Расход воды по (5.14)

Расчетный расход пульпы

рассчитаем диаметр шлакозолопровода по формуле (5.11)

Технические характеристики багерных насосов приведены в табл. 5.3.

Таблица 5.3 - Технические характеристики багерных насосов

Тип оборудованияТипо размерПроизводительность, м3/чДавление на выходе из насоса, Диаметр рабочего колеса, ммМощность на валу насоса, кВтМощность электродвигателя, кВтЧастота вращения ротора, об/минБагерные насосы12 Гр - 8Г1000-20000,57-0,48840270-432500730

5.3 Дымовые трубы

Дымовые трубы предназначаются для отвода дымовых газов в атмосферу. Выбор высоты и количества, устанавливаемых на ТЭС труб производится таким образом, чтобы концентрация вредных примесей у поверхности земли не превышала допустимых санитарных норм загрязнения атмосферного воздуха.

Минимально допустимая высота дымовой трубы при учете выбросов золы и окислов серы, м

где Спдк - предельно допустимая концентрация золы или сернистых газов,

Спдк = 0,5 мг/ м3;

А - коэффициент, учитывающий условия вертикального и горизонтального рассеивания примеси в воздухе, А = 160;

М - суммарный выброс золы и окислов серы из всех труб ТЭС, г/с;

F - безразмерный коэффициент, для, для золы = 2,0

m - безразмерный коэффициент, учитывающий влияние скорости газа на выходе из трубы, m= 0,6 при wг = 45 - 55 м/с и Н= 250-320 м;

z - число дымовых труб, шт.;

Vг - секундный объем дымовых газов, выбрасываемых из всех труб, м3/с;

Δt - разность температур газов на выходе из трубы и окружающего воздуха, Δt = 90°С.

Так как данная электростанция имеет 5 блоков, то принимаем 2 дымовых трубы.

Для расчета концентрации SO2 примем безразмерный коэффициент F = 1,0, для расчета концентрации золы равным F = 2,0.

Суммарный выброс золы и окислов серы после золоуловителей из всех труб, г/с

где n - число котлов, шт;

Sр - процентное содержание органической и колчеданной серы в рабочей массе топлива, %.

Минимально допустимая высота дымовой трубы при учете выбросов золы и окислов серы по формуле (5.15), м

Принимаем 1 дымовую трубу с высотой Н = 150 м.

Определим диаметр устья, м

Определим диаметр устья по формуле (5.18), м

5.4 Молниезащита главного корпуса

При расчете грозозащиты следует проверить нахождение защищаемых объектов (отделений главного корпуса) в зоне защиты молниеотвода, роль которого играет дымовая труба.

Рисунок 5.1 - Эскиз зоны защиты молниеотвода, установленного на дымовой трубе станции

Размеры зоны защищенной молниеотводами установленными на дымовой трубе:

где h - высота дымовой трубы;х - высота защищиаемых объектов;х1 - высота турбинного отделения;х2 - высота котельного отделения.

Определим радиус защищаемой зоны на высоте турбинного отделения по формуле (5.19):

Определим радиус защищаемой зоны на высоте котельного отделения по формуле (5.19):

Сравниваем радиусы rх1 и rх2 с расстояниями l1 и l2 соответственно:х1=74<178=l1,=44,6<118=l2;

Отсюда видно, что ни один из защищаемых объектов не попадает в зону защиты дымовой трубы, поэтому необходимо принять дополнительные меры грозозащиты, например, укладку на крыши и верхнюю часть стен зданий металлической сетки с приваренными к ней заземленными токоотводами.

На территории мазутного и маслянного хозяйств целесообразно установить стержневые молниеотводы.

6. Сооружения и оборудование топливоподачи и системы пылеприготовления

6.1 Разгрузочные устройства, дробилки и ленточные конвейеры

Разгрузка железнодорожных составов, прибывающих на электростанцию, производится роторными вагоноопрокидывателями, т.к они применяются на станциях с расходом топлива более 150 т/ч. Количество вагоноопрокидывателей для электростанций с производительностью топливоподачи свыше 400 т/ч определяется, исходя из 12 опрокидываний в час полувагонов средневзвешенной грузоподъемности 60 тонн в час. Выбираем на электростанции два вагоноопрокидывателя, так как потребление топлива на станции составляет 459 т/ч. Выбираем боковой вагоноопрокидыватель, т.к они уменьшают на 7 - 9 м заглубление подземной части, что важно при высоком уровне грунтовых вод.

Определим расход топлива на станции, т/ч:

Выбираем два вагоноопрокидывателя ВРС-125.

Технические характеристики вагоноопрокидывателей приведены в табл. 6.1

Таблица 6.1 - Технические характеристики вагоноопрокидывателя

ТипЧисло рабочих циклов в 1 часПроизводительность, т/ч при вагонах с грузоподъемностьюУгол поворотаn ротора, об/минМощность двигателя, кВтГабариты, мМасса, т60 т93 т125 тРоторный ВРС-1252515002325362517001,38142,423,2х9,4х8,4227

Из приемного разгрузочного устройства твердое топливо подается в КО двумя параллельными линиями (нитками) ленточных конвейеров, одна из которых рабочая, вторая резервная. Каждая лента конвейера обслуживается одной дробилкой с производительностью 850-1000 т/ч.

Технические характеристики молотковых дробилок приведены в таблице. 6.2

Таблица 6.2 - Технические характеристики дробилок

ТипоразмерПроизводительность, м3/чНаибольший размер загружаемых кусков, ммЧастота вращения ротора, об/минДиаметр ротора, ммМощность эл. двигателя, кВтМасса с эл. двигателем, тМ 20 × 20200 - 660600600200080066,2

Расчетная часовая производительность конвейера, т/ч

где Всут - суточный расход топлива при полной проектной мощности электростанции, т/сут;

Т - число часов работы топливоподачи в течение суток, Т =21, ч.

Производительность ленты конвейера, т/ч

Производительность ленты конвейера по формуле (6.3), т/ч

Примем конвейер с желобчатой лентой, так как ее производительность в 1,5 - 2 раза больше плоской.

Требуемая ширина ленты, м

где υ- скорость ленты, υ = 2 м/с;

jт - насыпной вес топлива, jт = 0,85 т/м3;

Ка -коэффициент, учитывающий угол естественного откоса α топлива на ленте.

Угол откоса принимаем равным α = 40°.

Примем стандартную ширину ленты b= 1600 мм.

Мощность на валу приводного барабана, кВт

где L - длина конвейера между центрами приводного и концевого барабана, м;

Н - высота подъема по вертикали между центрами приводного и концевого барабанов, м;

К1, К2 - коэффициенты, зависящие соответственно от ширины ленты и длины конвейера.

где β - угол наклона конвейера.

Мощность, потребляемая электродвигателем приводной станции конвейера, кВт

где Кз - коэффициент запаса, Кз = 1,25;

Рсб - мощность потребляемая сбросным устройством, кВт;

ηэд - КПД электродвигателя, ηэд = 0,93 - 0,97;

ηр - КПД редуктора, ηр = 0,95 - 0,97.

Мощность потребляемая сбросным устройством, кВт

Определим емкость бункера сырого угля, м3

где t- число часов работы парогенератора на топливе, ч;

Кз - коэффициент заполнения бункера, Кз = 0,8.

6.2 Топливные склады. Размораживающие устройства

Для обеспечения электростанции топливом создают его резервные запасы: оперативный резерв - в бункерах главного корпуса и в расходном складе и долговременный - на резервном складе.

Для приема, укладки угля в штабеля и выдачи его со склада примем следующий способ механизации: с удлиненными наземными конвейерами, бульдозерами и колесными скреперами на тракторной тяге.

Площадь, непосредственно занятую штабелями, м2

где Вчас - часовой расход топлива всей станции, т/ч;

n - число суток запаса топлива на складе;

jт - насыпной вес топлива, т/м3;

h - высота штабеля, м;

k - коэффициент, учитывающий угол естественного откоса (сползания) топлива в штабеле, k = 0,8 - 0,9.

Бульдозеры

формулы 6.11 6.12

6.3 Оборудование системы пылеприготовления

Пылеприготовительные установки выполняются с замкнутой схемой сушки топлива.

Для каменных углей применяется система с тихоходными шаровыми барабанными мельницами с промежуточным бункером пыли. Благодаря пылевому бункеру угольные мельницы можно загружать полностью, независимо от нагрузки парогенератора.

Мельницы выбираются по наибольшей имеющейся производительности. На парогенератор производительностью 420 т/ч и более устанавливают 2-3 ШБМ общей производительностью, обеспечивающей 110% номинальной нагрузки парогенератора; при выходе одной из них оставшиеся должны обеспечить не менее 90% нагрузки парогенератора. Расчетная производительность одной барабанной мельницы составляет, т/ч,

где n - количество устанавливаемых мельниц, шт;

р - коэффициент запаса по производительности, принимаем равным 1,2.

Кло - коэффициент размолоспособности.

Технические характеристики шаровой барабанной мельницы приведены в таблице 6.4

Таблица 6.4 - Технические характеристики мельниц

Тип мельницыПроизводи-тельность по АШ, т/чДиаметр барабана, ммДлинна барабана, ммЧастота вращения, об/минМощность эл. двигателя, кВтВес мельницы без эл. двигателя, тШБМ 400/10007040001000017,12460246,5

На угольном складе предусматривают резервную разгрузочную эстакаду, предназначенную для разгрузки неисправных вагонов, которые не могут быть разгружены в вагоноопрокидывателе.

7. Вспомогательные сооружения тепловой электростанции

7.1 Сооружения мазутного, масляного и Газового хозяйства

На данной электростанции мазут является растопочным топливом.

Мазутное хозяйство электростанций включает следующие основные элементы: приемно-сливного устройства, состоящего из разгрузочной железнодорожной эстакады, сливного лотка и промежуточной емкости; склада, на котором расположены резервуары для хранения мазута; мазутной насосной.

Для хранения мазута применяем металлические баки.

Запас мазута на электростанции, м3

где n - число растопочных котлов, шт;

m - число суток на растопку, 1,5 суток;

Вм.час - часовой расход мазута, кг/ч

r - плотность мазута марки 100, r = 990 кг/м3.

Для блоков КЭС мощностью 300 МВт одновременно растапливаются 3 котла.

Часовой расход мазута основными котлами, т/ч

где Qнр - низшая теплота сгорания мазута, кДж/кг. Для мазута марки 100 равна 9560 ккал/кг.

Запас мазута на электростанции по формуле (7.1), м3

Принимаем два бака емкостью 2000 м3.

Масляное хозяйство имеет четыре бака турбинного и четыре бака изоляционного масла. Емкость каждого бака - не менее емкости железнодорожной цистерны - 70 м3. Для бульдозеров и скреперов угольного топливного хозяйства устанавливают подземный резервуар дизельного топлива емкостью 75 м3.

7.2 Сооружения технического водоснабжения

На проектируемой электростанции согласно заданию применим оборотную систему водоснабжения с прудом охладителем. Пополнение воды происходит из реки Стир.

В этой системе главный корпус электростанции располагают близ берега пруда; насосы размещают в береговой насосной, так как годичные колебания горизонта воды в водохранилище могут быть значительными составляя несколько метров.

Водоприемное устройство и насосную размещают у более глубокого места пруда, вблизи плотины.

Плотину выполняют бетонной до 3-4 км, шириной по гребню 10 м, высотой до 30-40 м. Предусматриваются специальные водосбросные устройства при плотине для пропуска паводка и постоянных сбросов.

Нагретая в конденсаторах турбин вода сливается в водохранилище на некотором расстоянии от места приема, обеспечивающем необходимое ее охлаждение на пути от места забора до места слива.

Требуемая для охлаждения воды площадь водохранилища зависит от мощности КЭС, климатических условий, тепловой нагрузки и формы пруда.

Вода охлаждается в пруде, в основном за счёт её испарения с поверхности.

Насосная станция состоит из отдельных камер, число которых соответствует количеству насосов. Каждая из камер насосной станции состоит из водоприемной части, камеры всасывания и насосного помещения.

Выбор циркуляционных насосов.

Расчетная производительность ЦН, м3/ч

где - величина летнего режима охлаждения, м3/ч;

n - число турбин, шт.

Определим расчетную производительность ЦН по формуле (7.3), м3/ч

Напор ЦН принимаем 200 кПа.

Принимаем два рабочих циркуляционных насоса на один блок, производительностью каждый по 50%, установленных в машзале.

Технические характеристики ЦН приведены в табл. 7.1

Таблица 7.1 - Характеристика циркуляционного насоса

ТипНапор, м вод. ст.Производительность, м3/чКПД, %Потребляемая мощность, кВтЧастота вращения, об/минОПII-18515,5 -12,859920 - 79000843000333

7.3 Сооружения электрической части

На проектируемой станции открытые распределительные устройства на напряжения 330 и 110 кВ размещаются перед фасадом главного корпуса.

Так как на станции используются два повышенных напряжения, то автотрансформаторы связи устанавливаются около РУ 330 кВ. На территории ОРУ предусматриваются помещения для панелей релейной защиты, аккумуляторных батарей и компрессорной.

Распределительные устройства С.Н. 6 и 0.4 кВ размещаются в главном корпусе вдоль фасадной стены.

Вспомогательными устройствами на КЭС, относящимися к электрической части, являются: трансформаторно-масляное хозяйство (ТМХ), электротехническая лаборатория и электротехнические мастерские.

7.4 Сооружения угольного топливного хозяйства

Топливом на проектируемой станции служит Волынский каменный уголь. Топливное хозяйство электростанции состоит из угольного склада, системы ленточных транспортеров, расположенных в подземных эстакадах, узлов пересыпки и вагоноопрокидователь.

Для дробления твёрдого топлива используются дробильные установки. Дробилки грубого дробления размещаются под вагоноопрокидывателями, а дробилки тонкого дробления в тракте топливоподачи. Перед ними установлены электромагнитные сепараторы для улавливания металла и наклонные колосниковые решётки для отсева мелочи (и тем самым для снижения загрузки дробилок). Каждая нитка конвейера обслуживается двумя дробилками грубого дробления и одной дробилкой тонкого дробления.

Узлы пересыпки размещают по тракту топливоподачи в местах пересечения и изменения направления конвейеров, а также на прямых участках через каждые 200 м. В узлах пересыпки размещают натяжные и концевые станции конвейеров, а также рукава для пересыпки угля.

7.5 Подсобно - производственные здания и сооружения

Количество подсобно-производственных зданий и сооружений на площадке ТЭС зависит от вида топлива, степени блокировки зданий, возможности кооперирования вспомогательных цехов с другими предприятиями.

Для проектируемой электростанции требуются следующие подсобно - производственные здания и сооружения: объединенный вспомогательный корпус (ОВК); склад реагентов химводоочистки; общестанционная компрессорная; ацетиленокислородная станция; экипировочноремонтный блок; служебно-техническое здание железнодорожного транспорта; пожарное депо; проходная.

8. Сооружения угольного склада

1 Общая схема и оборудование топливного хозяйства пылеугольной электростанции

Схема топливного хозяйства ТЭС предопределяется последовательностью технологических операций с топливом, предшествующих его поступлению в пыле-приготовительную установку. Компоновка объектов топливного хозяйства зависит от характеристик топлива, вида используемых механизмов и машин, мощности станции.

Типовая технологическая схема топливоподачи ТЭС показана на рис. 8.1. Разгрузочное устройство оборудовано вагоноопрокидывателями, разгружающими вагоны с углем в приемные бункера. Смерзшееся топливо перед разгрузкой размораживают в тепляках. Если производительность топливоподачи менее 400 т/ч, устанавливают один вагоноопрокидыватель, от 400 до 1000 т/ч - два вагоноопрокидывателя. Для электростанций с производительностью топливоподачи свыше 1000 т/ч количество вагоноопрокидывателей выбирается исходя из 12 опрокидываний в час вагонов средневзвешенной грузоподъемности плюс один резервный вагоноопрокидыватель. Топливо доставляется на ТЭС в полувагонах грузоподъемностью 60-125 т.

Для электростанции на фрезерном торфе тип раз-грузочного устройства (безъемкостное, траншейное, с многоковшовыми перегружателями и пр.) определяется в каждом конкретном случае с учетом расхода торфа и типа вагонов.

Приемные бункера вагоноопрокидывателей перекрывают решетками с размерами ячеек не более 350´350 мм, расширяющимися книзу. Крупные куски топлива измельчаются и проталкиваются перемещающимися над решетками дробильно-фрезерными машинами. В соответствии с нормами технологического проектирования тепловых электрических станций при соответствующем обосновании допускаются размеры решеток под вагоноопрокидывателем с ячейками более 350´350 м. В этом случае топливо после приемных бункеров должно пройти через дробилки грубого дробления. Установка этих дробилок приводит к увеличению заглубления здания вагоноопрокидывателей, что связано с дополнительными капитальными затратами. Из-под бункеров разгрузочного устройства топливо выдается ленточными питателями, оснащенными шкивными магнитными сепараторами для извлечения из топлива поддающихся намагничиванию металлических предметов.

От каждого вагоноопрокидывателя отходит один ленточный конвейер с производительностью, равной производительности вагоноопрокидывателя. Нумерация конвейеров топливного хозяйства ведется по ходу топлива от разгрузочного устройства в главный корпус, на склад и со склада. Параллельным конвейерам одинакового порядкового номера присваивают буквенные индексы «а», «б».

Топливо в котельную подается двухниточной системой ленточных конвейеров, рассчитанных на трехсменную работу. Обычно одна из ниток работает, а вторая находится в резерве. Однако могут одновременно работать обе нитки системы. Такая необходимость может быть вызвана ухудшением качества и увеличением нестабильности качественных характеристик топлива, а также недостаточной надежностью некоторых узлов топливоподачи.

В узле пересыпки №1 топливо с конвейеров №1 с помощью распределителей, в качестве которых обычно используются перекидные шиберы, направляется на одну из ниток конвейера №2, которым транспортируется в дробильный корпус. Здесь топливо либо поступает в молотковые дробилки, либо сбрасывается плужковыми сбрасывателями на конвейер подачи топлива на склад. Дробилки измельчают топливо до размера 25 мм. При работе на торфе и другом мелком топливе (0-25 мм) топливо может подаваться, минуя дробилки. Перед дробилками для отсева мелких фракций устанавливается грохот или стационарная колосниковая решетка. Производительность всех установленных дробилок тонкого дробления должна быть не меньше производительности всех ниток топливоподачи в котельное отделение. Каждая нитка конвейера №2 работает со своей парой дробилок, причем в работе могут находиться одна из дробилок данной пары либо обе дробилки одновременно.

Перед дробилками устанавливают подвесной саморазгружающийся электромагнитный металлоискатель и металлоотделитель. При шаровых барабанных мельницах металлоуловители устанавливают только до дробилок.

Конвейерами №3 топливо подается в башню пересыпки бункерной галереи главного корпуса. На этих конвейерах установлены ленточные весы для текущего учета топлива, израсходованного за сутки.

На топливоподающем тракте после дробилок в узле пересыпки располагаются механические пробоотборные устройства, с помощью которых отбирают топливо при сбросе его с конвейеров и приготовляют усредненные пробы топлива для физико-химических анализов.

На конвейерах №4 в бункерной галерее на каждый бункер сырого угля установлены два двусторонних плужковых сбрасывателя. На резервный склад уголь подается конвейером и роторной погрузочной машиной-штабелером (РПМ). Послойная укатка угля на складе производится бульдозерами. Топливо со склада выдается в узел пересыпки конвейером непосредственно от РПМ.

Вместимость складов угля и сланцев принимается (без учета госрезерва), как правило, равной 30-суточ-ному расходу топлива. При небольших расстояниях между ТЭС и местом добычи топлива (41-100 км) вместимость склада может быть уменьшена до 15-суточного расхода, а при расстояниях до 40 км - до 7-суточного расхода.

Система и уровень механизации угольных складов определяются на базе технико-экономического обоснования и должны обеспечивать выполнение складских работ и ремонт механизмов с минимальной численностью персонала. На угольных складах должны применяться механизмы непрерывного действия (роторные погрузчики, штабелеукладчики), мощные бульдозеры.

Ленточные конвейеры, как правило, размещаются в закрытых галереях, размеры которых выбирают, исходя из обеспечения необходимых проходов. Галереи ленточных конвейеров, помещения узлов пересылок, а также подземная часть разгрузочных устройств отапливаются. В них температура составляет +10°C, а в помещениях дробильных устройств +15°С.

На электростанциях в районах с расчетной температурой наружного воздуха -20°С и ниже галереи конвейеров подачи топлива на склад выполняют отапливаемыми, в них поддерживается температура не ниже +10°С. В остальных районах они не отапливаются, а на конвейерах используется морозостойкая лента.

Расстояние между объектами топливоподачи определяется перепадом высот при подаче топлива и допустимым углом наклона ленточных конвейеров, который не превышает 18°.

Наиболее трудоемка по условиям строительства заглубленная подземная часть зданий и сооружений, поэтому важна оптимизация компоновки оборудования и объемно-планировочных решений, позволяющая сократить количество объектов, располагаемых ниже уровня земли, а также уменьшить глубину сооружений с подземной частью. Поперечные сечения подземных и надземных транспортных галерей следует выполнять унифицированными, чтобы исключить сложные и трудоемкие переходные участки в местах выхода галерей из земли. Для надземных эстакад целесообразно применение легких металлоконструкций, что позволяет вести монтаж индустриальными блочными методами.

Здания и сооружения тракта топливоподачи относятся к категории пожароопасных помещений. По требованиям пожаробезопасности внутри конвейерных галерей не допускается прокладывать транзитные электрические коммуникации. В связи с этим с наружной стороны наземных конвейерных галерей устраивают мостики, на которых устанавливают металлические кабельные короба. В строительных конструкциях внутри зданий и сооружений топливоподачи должны быть исключены горизонтальные полки, на которых могут появиться отложения пыли.

8.2 Открытые склады твердого топлива. Общие сведения

Склады топлива выполняются открытыми. Устройство закрытых складов угля допускается только для ТЭЦ при технико-экономическом обосновании.

Открытые склады мелкого древесного топлива представляют собой площадки с твердым покрытием, оборудованные электрическим освещением и пожарным водопроводом. Топливо на такие склады подвозится автосамосвалами, подается пневмотранспортными установками или другими средствами непрерывного транспорта. Формирование штабелей топлива при этом осуществляется бульдозерами. Запрещается осуществлять разгрузки, хранить на складах твердого топлива и сжигать топливо с неизвестными или неизученными характеристиками по взрывопожаробезопасности. Площадка для хранения твердого топлива (угля, сланца, торфа) должна быть очищена от растительного мусора и прочих материалов, выровнена и плотно утрамбована. Запрещается укладка углей, торфа и горючих сланцев на грунте, содержащем органические вещества и колчеданы. Под вновь закладываемыми штабелями твердого топлива не рекомендуется располагать водосточные каналы, дренажные устройства, отдельные трубы и кабели, а также теплофикационные, кабельные и другие тоннели. На складе должна быть предусмотрена специальная площадка для тушения самовозгоревшегося топлива и его остывания после удаления из штабеля, помещение для обогрева рабочих, помещение для хранения сорбентов (присадок к топливу для подавления выбросов SO2). Открытые склады целесообразно устраивать в районах с теплым и сухим климатом.

Штабелирование топлива и его загрузка в приемные бункера топливоподачи предусматривается бульдозером.

Все топливо, поступающее на склад для длительного хранения, должно укладываться в штабеля по мере выгрузки его из вагонов в возможно короткие сроки. Запрещается хранение выгруженного топлива в бесформенных кучах и навалом более суток. Закладка штабелей торфа на хранение, а также укладка штабелей других видов твердого топлива должны выполняться в соответствии с требованиями "Инструкции по хранению ископаемых углей, горючих сланцев и фрезерного торфа на открытых складах электростанций. Запрещается засыпать проезды твердым топливом и загромождать их оборудованием. В зимнее время указанные проезды должны регулярно очищаться от снега.

На рисунке 8.2 показан открытый склад угля Красноярской ТЭЦ-2.

Рис.8.2-Открытый склад угля Красноярской ТЭЦ-2

Подштабельное основание устраивается различного типа: от бетонного основания до простой планировки с уплотнением грунта катком. При больших площадях угольных складов практикуется устройство оснований под штабель путем укатки спланированной площадки смесью штыба или шлака с глиной.

При условии поступления угля преимущественно водным транспортом и лишь частично по железной дороге схема механизации угольного склада резко изменяется. Так, например, сохраняя тип приемных устройств по схеме с портальными кранами, можно разместить их вдоль причальной линии для должного ее оснащения мощными и подвижными средствами механизации, а самый склад оборудовать пролетными типами подъемно-транспортных машин в виде мостового перегружателя, кабель-крана или скреперной установкой.

Основным видом топлива ГГС и ТЭЦ на металлургических заводах является уголь (редко - торф). Расходные открытые склады угля ГГС и ТЭЦ располагаются или обособленно от центрального угольного склада по возможности ближе к месту потребления, или территориально совмещаются с центральным складом угля. Оперативная часть склада угля ГГС и ТЭЦ в виде развитых приемных устройств бункерного или траншейного типа вблизи потребителя является основной частью системы топливоподачи ГГС и ТЭЦ.

Список используемых источников

1 Смирнов, А.Д. Справочная книжка энергетика: Учеб.пособие / А.Д. Смирнов, К.М. Антипов. - М.: Энергоатомиздат, 1984. - 440с.

Неклепаев Б.Н. Электрическая часть станций и подстанций:Справочные материалы для курсового и дипломного проектирования: Учеб.пособие для вузов /Б.Н. Неклепаев, И.П. Крючков. - М.: Энергоатомиздат, 1989. - 608с.

Нормы технологического проектирования тепловых электрических станций:/ВНТП 81. - М.:Теплоэлектропроект.,1981.

Рожкова, Л.Д. Электрооборудование станций и подстанций: Учебник для техникумов / Л.Д. Рожкова, В.С. Козулин. - М.: Энергоатомиздат, 1987. - 648с.

Правила устройства электроустановок. /Утверждено: Министром топлива и энергетики Российской Федерации, 1999 г.

Гук, Ю.Б. Проектирование электрической части станций и подстанций: Учебное пособие для вузов/Ю.Б. Гук, и др. - Л.:Энергоатомиздат. Ленингр. отд-ние, 1985. - 312с.

Купцов, И.П. Проектирование и строительство тепловых электростанций: Учебник для вузов / И.П. Купцов И.П. Ю.Р. Иоффе - М.: Энергоамтомиздат, 1985. - 408 с. с ил.

Рыжкин В.Я. Тепловые электрические станции: / Учебник для вузов В.Я. Рыжкин - М.: Энергоатомиздат, 1987. - 328 с. с ил.

Тремясов В.А. Проектирование технологической части тепловой электростанции: Метод. указания по курсовому и дипломному проектированию / В. А. Тремясов - Красноярск.: КГТУ, 1998. - 52 с.

Цыганок А.П. Проект ТЭС: Метод. указания по курсовому и дипломному проектированию / А.П. Цыганок Н.А. Сеулин - Красноярск.: КГТУ, 1981. - 59 с.

Площадка Уссурийской ТЭЦ расположена в восточной части окраины городских земель г. Уссурийска Приморского края. С юга площадка ограничена автодорогой Уссурийск-Осиновка, с запада территорией зверофермы, с севера водоразделом реки Кореянка.

Климат района довольно резкий: лето жаркое, зима холодная и длинная. Период со среднесуточной температурой ниже 0 градусов составляет 147 суток. Максимальное значение температуры воздуха (+)38 градусов, минимальное (-)46 градусов. Среднегодовое количество осадков 700-850 мм. Почти половина всех осадков выпадает в августе-сентябре. Небольшой снежный покров слабо защищает почву от промерзания. Глубина промерзания грунта 1,0 м., на открытых площадках достигает 1,5-2,0 м.

По сейсмичности территория промплощадки Уссурийской ТЭЦ относится к 7-9 балльной зоне.
Рельеф промплощадки ТЭЦ террасный, искусственно спланированный насыпными грунтами мощностью до 2,0 м. и выемками. Абсолютные отметки изменяются от 23,00 м до 36,00 м.

Ближайшая железнодорожная станция «Уссурийская», к которой примыкает подъездной путь ТЭЦ, расположена с западной стороны от промплощадки ТЭЦ.

Стройдвор ТЭЦ размещается с временного торца нового главного корпуса с восточной стороны.

Хозяйственно-питьевое водоснабжение ТЭЦ предусматривается от существующих водоочистных сооружений, расположенных на западе от ТЭЦ на расстоянии 1,0 км.

Источником технического водоснабжения является водозабор на Раковском водохранилище, который расположен на востоке от ТЭЦ на расстоянии 10,0 км.

Источником питания производственно-противопожарного водопровода является система техводоснабжения ТЭЦ.
Проектируемый золоотвал располагается на юго-востоке от ТЭЦ на расстоянии 1,0 км.

Хозбытовые стоки с промплощадки сбрасываются во внутриплощадочные сети и направляются на существующие городские очистные сооружения.

Дождевые стоки с территории промплощадки собираются смешанным способом (в закрытую сеть, железобетонные лотки и открытые водоотводные канавы). Все ливневые стоки от ТЭЦ отводятся через систему ливневой канализации в очистные сооружения поверхностных стоков.

На территории ТЭЦ запроектированы железнодорожные пути, обеспечивающие связь с внешней сетью железных дорог РЖД и подъездные автомобильные дороги, обеспечивающие связь с внешними автомобильными дорогами и внеплощадочными сооружениями.

Компоновка генерального плана и размещение основных сооружений предопределены соблюдением противопожарных норм, технологических требований, транспортных связей и обеспечением нормальной работой предприятия технологическими связями основных зданий и сооружений ТЭЦ.

Проектом предусматривается строительство следующих зданий и сооружений:
главного корпуса;
пуско-отопительной котельной;
инженерно-административного корпуса с бытовыми помещениями;
бытового корпуса со столовой;
открытой установки трансформаторов с путями перекатки;
ОРУ 220 кВ;
угольного склада;
разгрузочного устройства с вагоноопрокидывателями 2 шт;
размораживающего устройства;
тракта топливоподачи;
химводоподготовки;
центральных ремонтных мастерских;
зданий железнодорожного транспорта;
объединенного масло-мазутохозяйства;
автогаража;
сооружений технического водоснабжения;
золоотвала;
очистных сооружений;
градирен;
стройдвора.

Все проектируемые здания и сооружения ТЭЦ связаны сетью автодорог с капитальным типом покрытия.

На территории ТЭЦ ранее частично выполнена вертикальная планировка.

Прокладка инженерных сетей на промплощадке предусмотрена как подземной, так и надземной на эстакадах.

Под землей проложены сети водопровода, канализации, аварийные маслостоки, электрокабели. Эстакада технологических трубопроводов и теплопроводов проектируется на высоких отдельно стоящих опорах.

Для обеспечения нормальных санитарно-гигиенических условий на промплощадке предусматривается благоустройство и озеленение территории ТЭЦ, основным видом озеленения территории приняты газон с посевом газоноустойчивых трав, цветники и деревья кустарникового типа.

Что такое генеральный план электростанции? Что показывается на генеральном плане?

Генеральный план (ГП) представляет собой вид сверху на площадку электростанции и показывает размещение на ней зданий и сооружений с указанием их размеров по высоте. ГП разрабатывается на стадии технического проекта станции. Масштаб ГП обычно 1:1000 (т.е. один сантиметр на бумажном плане соответствует 10 метрам на местности).

На генеральном плане показываются :

Здания и сооружения (включая галереи, эстакады, туннели);

Транспортные пути (автомобильные и железные дороги, автостоянки, подкрановые пути) и линии электропередачи;

Открытые водоводы системы техводоснабжения;

Ограды станции в целом и отдельных объектов на ее территории.

Здания и сооружения электростанции делятся на две категории:

- здания и сооружения основного производственного назначения , к которым относятся главное здание с котлотурбинным цехом и примыкающими помещениями для вспомогательного оборудования, химцех, объекты топливно-транпортного хозяйства, ремонтные помещения, дымовые (на ТЭС) и вентиляционные (на АЭС) трубы, береговые насосные станции, градирни, брызгальные бассейны, трубопроводы технической воды и гидрозолошлакоудаления, золошлакоотвалы, открытые (ОРУ) или закрытые (ЗРУ) распределительные устройства и др.; на АЭС дополнительно имеются спецкорпус для обработки радиоактивных вод и хранения отходов, представляющих радиационную опасность, а также автономные дизель-генераторные установки надежного питания на случай полного обесточивания станции;

- здания и сооружения подсобно-производственного и вспомогательного назначения , в частности, административно-бытовой корпус, пункты общепита, различные склады, гараж, пожарные службы, сооружения для очистки воды; на АЭС к данной категории зданий и сооружений также относятся склады свежего топлива, хранилища радиоактивных отходов (РАО), устройства приточно-вытяжной вентиляции, вспомогательный корпус с санпропускниками и др.

Каков порядок составления генерального плана ТЭС и АЭС? Каковы основные требования к генеральному плану?

При составлении генерального плана в первую очередь размещают на нем главный корпус, который должен быть обращен турбинным отделением к источнику водоснабжения, если это река, море, водохранилище и т.п.

На электростанции с градирнями главный корпус должен располагаться с наветренной стороны по отношению к ним во избежание обледенения в холодное время года. При этом градирни должны размещаться со стороны постоянного торца главного здания на расстоянии не менее 100 м. Такой же минимальный разрыв и по той же причине соблюдается между градирнями и ОРУ.



Со стороны котельного отделения располагаются:

Вентиляторы и регенеративные воздухоподогреватели (непосредственно рядом с главным зданием);

Объекты топливного хозяйства и транспортировки топлива для сжигания; при пылеугольном топливе расстояние от них до котельного отделения предусматривается с учетом непревышения предельно допустимого угла наклона конвейера топливоподачи.

ОРУ располагают исходя из удобства трассировки линий электропередачи (ЛЭП) – лучше всего со стороны машзала.

Со стороны постоянного торца главное здание обычно связано галереей с объединенным вспомогательным корпусом (ОВК), где находятся административные службы, столовая, мастерские, склады и т.д.

Со стороны временного торца главного корпуса резервируется свободное место для расширения котлотурбинного цеха. На этой территории могут располагаться временные объекты, например, монтажно-сборочные площадки, насыпные склады угля, автостоянки.

Назовем основные требования к генеральному плану .

Здания и сооружения электростанции располагаются таким образом, чтобы обеспечивалась минимальная протяженность транспортных путей при одновременном соблюдении минимально допустимых расстояний между отдельными объектами. Эти нормы устанавливаются прежде всего для обеспечения противопожарной безопасности. Для хранения горючих материалов могут сооружаться специальные склады на отдельной огороженной площадке.

ТЭС и АЭС целесообразно проектировать сразу на полную мощность, чтобы уменьшить стоимость строительства за счет совмещения ряда объектов в единых общестанционных зданиях. В первую очередь это касается всего, что может размещаться в ОВК.

На территории станции нужно предусмотреть удобные стоянки для автотранспорта, тротуары, озеленение и т.п.

Какие количественные показатели характеризуют совершенство генерального плана? Каковы особенности генерального плана ТЭЦ? Каковы особенности генерального плана АЭС?

Совершенство генерального плана может характеризоваться следующими количественными показателями :

Удельная площадь застройки, равная отношению площади станции в ограде к установленной мощности;

Коэффициент использования территории, показывающий, какая доля всей площади станции в ограде занята зданиями и сооружениями;

Коэффициент застройки, равный отношению площади, занятой зданиями, ко всей площади в ограде.

Особенностью генерального плана ТЭЦ по сравнению с КЭС является необходимость максимально возможной экономии площадей, так как ТЭЦ обычно расположены в городах. Здесь предпочтительны оборотные СТВ с градирнями. Часть распределительных устройств может располагаться в закрытых помещениях – это ЗРУ.

На генеральном плане ТЭЦ показываются не только выводы ЛЭП, но и трубопроводы подачи пара и горячей воды тепловым потребителям.

Рассмотрим также особенности генерального плана АЭС .

Атомные электростанции имеют только блочную структуру, главным образом по соображениям безопасности реакторной установки. В связи с этим нужно выбрать место между энергоблоками для расположения общестанционных объектов.

К ним, в частности, относятся спецводоочистка (СВО), предназначенная для обработки радиоактивных вод, и вентиляционный центр, осуществляющий принудительную приточно-вытяжную вентиляцию помещений для обеспечения радиационной безопасности эксплуатационного персонала АЭС.

Склад нового топлива (свежих твэлов) размещается рядом с реакторным отделением, а хранилища РАО не ближе 500 м от него.

На АЭС имеется лабораторно-вспомогательный корпус, который располагают со стороны постоянного торца главного здания, здесь же находится и ОВК.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

Федеральное государственное образовательное учреждение

высшего профессионального образования

ибирский федеральный университет "

П олитехнический институт (СФУ)

Кафедра "Тепловые электрические станции"

Утверждаю

Заведующий кафедрой

С.А. Михайленко

Пояснительная записка к дипломному проекту

Проект строительства ТЭЦ 500 МВт

Разработал студент

А.А. Янченко

Руководитель

В.А. Дубровский

Консультант

по экономической части

И.А. Астраханцева

Консультант по безопасности

и экологии производства

В.В. Колот

Задание по дипломному проектированию

станция турбина тепловой водоснабжение

1. Тема Проект строительства ТЭЦ 500 МВт

2. Утвержден приказом по университету №330 от 4 февраля 2007 г.

3. Срок сдачи студентом законченного проекта 26 мая 2007 г.

4. Исходные данные к проекту Отопительная нагрузка 60 МВт, топливо Ирша-бородинский уголь

5. Содержание расчетно-пояснительной записки (перечень подлежащих разработке вопросов) Введение, конструирование тепловой схемы выбранной турбины, расчет тепловой схемы, выбор оборудования в пределах тепловой схемы, генплан и компоновка, разработка схем топливоподачи, золоудаления и водоснабжения, охрана окружающей среды, безопасность проекта, экономическая часть, заключение.

6. Перечень графического материала (с точным указанием обязательных чертежей)

Лист 1. -Принципиальная тепловая схема

Лист 2. - Поперечный разрез главного корпуса

Лист 3.- Генеральный план

Лист 4.-Схема водоснабжения

Лист 5.-Схема топливоподачи

Лист 6.-Система гидрозолошлакоудаления

Календарный график

18.03 Получение задания_______________________________________

22.03-25.03 Экономическое обоснование, выбор основного оборудования___

28.03-30.03 Расчёт тепловой схемы турбины К-150-130 __________

1.04-4.04 Выбор вспомогательного оборудования______________

7.04-8.04 Охрана труда______________________________________

8.04-9.04 Расчет технического водоснабжения_________________

9.04-11.04 Топливное хозяйство _____________________

15.04-21.04 Выбор и расчет системы золоулавливания и гидрошлакоудаления

22.04-25.04 Оформление задания по охране труда________________

26.04-28.04 Описание генплана, компоновки главного корпуса_____

29.04-02.05 Оформление графической части проекта________________

3.05-10.05 Оформление записки______________________

23.05-30.05 Сбор подписей консультантов____________________

Аннотация

Дипломный проект "Строительство ТЭЦ 500 МВт"

102 страниц печатного текста

19 таблиц

16 рисунков

Ключевые слова

Турбоагрегат, расчет тепловой схемы, теплофикационная установка, паропровод, гидрозолоудаление.

Объектом строительства является ТЭЦ 500 МВТ.

Технико-экономическое обоснование, расчет принципиальной тепловой схемы, выбор вспомогательного оборудования, расчет топливного хозяйства и схемы гидрозолоудаления, безопасность проектируемого объекта, охрана окружающей среды, экономическая часть.

Проектирование проводилось расчетным путем.

Цель работы состоит в расчете объекта, а также его экономической целесообразности.

Введение

2.1.2 Определение параметров по элементам схемы

2.1.7 Расчет деаэратора

2.3.2 Деаэратор

2.3.3 Сетевые подогреватели

2.3.7 Выбор сетевых насосов

3.1 Проектирования топливного хозяйства

3.1.3 Ленточные конвейеры

3.1.4 Дробилки

3.1.5 Топливные склады

3.3 Золоулавливание

3.4 Золоудаление

3.6 Генеральный план

3.7 Выбор и описание компоновки главного корпуса

3.8 Выбор системы водоснабжения

4. Защита окружающей среды

4.1 Расчет выбросов вредных веществ

4.2 Защита водоемов от загрязнения сточными водами

5. Безопасность проектируемого проекта

5.1 Общая характеристика проектируемого объекта с точки зрения безопасности и безвредных условий труда

5.2 Анализ и устранение потенциальных опасностей и вредностей технологического процесса

5.2.1 Опасность поражения электрическим током

5.2.2 Опасность травмирования движущимися частями машин и механизмов

5.2.3 Тепловые выделения и опасность термического ожога

5.3 Производственная санитария

5.3.1 Микроклимат производственных помещений

5.3.2 Освещение

5.3.3 Вредные вещества в воздухе рабочей зоны

5.3.4 Шум, ультразвук и инфразвук

5.3.5 Вибрация

5.4 Предотвращение аварийных ситуаций

5.4.1 Техническое освидетельствование сосудов, работающих под давлением

5.4.2 Техническое освидетельствование грузоподъемных машин и механизмов

5.4.3 Техническое освидетельствование котлов

5.4.4 Обеспечение взрывопожарной безопасности производства

5.5 Обеспечение устойчивости объекта в чрезвычайных ситуациях

5.6 Индивидуальное задание

6. Экономическая часть

6.1 Экономическое обоснование состава основного оборудования на основе народнохозяйственного подхода

6.2 Экономическое обоснование на основе хозрасчетного подхода

Список использованных источников

Введение

Энергетика - сектор экономики, охватывающий сложную совокупность процессов преобразования и передачи энергии от источников природных энергетических ресурсов до приемников энергии включительно и представляет собой сложный развивающийся объект, исследование которого возможно только на основе системного подхода.

Энергетика сегодня занимает в жизни общества такое место, что не возможно оценить отказ от его благ. Вмести с тем и очень высока цена энергии: ее производство и транспорт.

Энергия является важнейшим фактором производства и жизнеобеспечения современного общества. Действительно, энергетическая составляющая на производство промышленной продукции и транспортные услуги в России превышает в настоящее время 17%, сельскохозяйственной продукции - 11%.

Топливно-энергетический (ТЭК) комплекс России - крупнейший инфраструктурный комплекс народного хозяйства.

Устойчивое и эффективное функционирование и развитие энергетики необходимо для обеспечения большинства компонентов национальной безопасности - экономической, финансовой, внешнеэкономической, технологической и др.

Электроэнергетика является важнейшим компонентом топливно-энергетического комплекса, его узловой, интегрирующей подсистемой.

1. Технико-экономическое обоснование проектируемой ТЭЦ

1.1 Обоснование строительства станции

Актуальность темы дипломного проекта обосновывается целями и приоритетами энергетической стратегии России на период 2020 года. Развитие электроэнергетики должно обеспечить необходимыми энергетическими ресурсами начавшийся экономический рост во всех отраслях народного хозяйства.

Для обеспечения прогнозируемых уровней электро- и теплопотребления при оптимистическом варианте развития необходимо создание генерирующих мощностей на электрических станциях России (с учётом замены и модернизации) в 2005-2020 г.г. не менее 177 млн. кВт, в том числе на гидро- и гидроаккумулирующих электростанциях 11,2 млн. кВт, на атомных 23 млн. кВт и на тепловых 143 млн. кВт (из них с парогазовыми и газотурбинными установками 37 млн. кВт). При умеренном варианте развития планируется ввод в действие генерирующих мощностей 121 млн. кВт, в том числе на тепловых электрических станциях (ТЭС) 97 млн. кВт.

Таким образом, согласно энергетической стратегии ввод новых мощностей не изменит структуру установленной мощности электрических станций, в которой наибольший удельный вес занимают ТЭС.

Проект строительства ТЭС в целом отвечает основным приоритетным направлениям развития электроэнергетики, согласно которым выработка электроэнергии на ТЭС к 2020 г. возрастёт в 1,4 раза по сравнению с 2000 г. Масштабы сооружения ГРЭС и ТЭЦ будут определяться сокращением строительства атомных и гидравлических электростанций, возможностями развития топливной базы и соответствующим расширением транспортной сети.

Сооружение ТЭЦ в городе вызвано, прежде всего, необходимостью покрытия тепловых нагрузок коммунально-бытовых потребителей. Все это вызывает необходимость строительства мощного централизованного источника теплоснабжения.

Заданием предусматривается проектирование ТЭЦ с заданной электрической мощностью в 500 МВт и расчетной тепловой нагрузкой потребителей в горячей воде 60 ГДж.

2. Конструирование и расчет тепловой схемы выбранной турбины. Выбор оборудования в пределах тепловой схемы

2.1 Разработка принципиальной тепловой схемы

Принципиальная тепловая схема с турбиной Т-100-130 представлена на рисунок 2.1. Как видно из схемы турбина двухцилиндровая с двухпоточной ЧНД и одним регулируемым отбором.

Система регенерации состоит из четырех подогревателей низкого давления, деаэратора и трех подогревателей высокого давления. Слив дренажа из подогревателей высокого давления - каскадный (без использования дренажных насосов) в предвключённый деаэратор. Слив дренажа из подогревателей низкого давления ПНД 4 и ПНД 5 - каскадный в подогреватель низкого давления ПНД 6 и из него дренажным насосом в линию основного конденсата. Из подогревателя низкого давления ПНД 7 слив каскадный в конденсатор.

Отпуск тепла осуществляется следующим образом. Пар из теплофикационного регулируемого отбора подаётся на сетевую подогревательную установку. Горячая вода на отопление подогревается в двух сетевых подогревателях. Дренаж из подогревателей сливается каскадно в линию основного конденсата.

В схеме используется котёл барабанного типа. Из котла организована непрерывная продувка. Для уменьшения потерь тепла продувочная вода направляется в двухступенчатый расширитель непрерывной продувки, а затем - в регенеративный подогреватель химически очищенной воды из химводоочистки (ХВО) и сбрасывается в канализацию.

Пар с уплотнений поступает в сальниковый подогреватель (ОУ), а из основных эжекторов конденсатора - в охладитель эжекторного пара (ОЭП), что способствует дополнительному обогреву основного конденсата.

По заводским данным для турбины Т-100-130 :

Давление в отборах, МПа

2.1.1 Построение процесса расширения пара на i-s диаграмме

Процесс построен с учетом потерь в регулирующих клапанах цилиндров турбины в соответствии с начальными и конечными параметрами. Из характеристики турбины имеем начальное давление пара 130 бар, температура острого пара 545 0 С. Находим на i-s диаграмме точку (А0") (рисунок 2.2.) Давление пара с учетом потерь в регулирующих клапанах ЦВД составляет, бар.

Р0"=Р0· здрЦВД=127,5·0,95=121,125

Находим по i-s диаграмме точку (А0). Определяем энтальпию пара в точке Ао. Далее из точки (А0) проводим прямую, до пересечения с изобарой, соответствующей давлению пара за ЦВД. Отмечаем точку (В"0).

Теоретический процесс расширения пара в ЦВД изображается линией (А0-В"0). Находим действительный процесс расширения пара в ЦВД, зная относительный внутренний КПД части высокого давления. При действительном процессе расширения, энтальпию пара в точке (В), можно определить, кДж/кг

iB0= iА0-(iА0- iB) зoiЦВД

iB0=3511,46-(3511,46-3131,92)·0,83=3195,98

где iB - энтальпия пара в конце теоретического процесса расширения пара в ЦВД, кДж/кг

Зная энтальпию iB0, можно найти точку (В0) на изобаре Ротб1.

Давление в точке (В) определяем с учетом дросселирования в регулирующих клапанах ЦСД, бар.

РB= Ротб1· здрЦВД

РВ=33,6·0,95=31,92

Из точки (В)- проводим прямую линию, до пересечения с изобарой, что

соответствует давлению пара за ЦСД. Действительный процесс расширения пара в ЦСД находим, зная относительный внутренний КПД части среднего давления.

Энтальпия пара в точке С0, кДж/кг.

iС0= iВ0-(iВ0"- iС) зoiЦСД

iС0=3195,98-(395,98-2515,25)0,852=2616,0

где iс энтальпия пара в конце теоретического процесса расширения пара в ЦСД, кДж/кг.

Зная энтальпию iС0, можно определить точку С0 на изобаре Ротб7.

Точку С найдем с учётом потери давления в регулирующих клапанах ЦНД, бар.

РС= Ротб7· здрЦНД

РС= 0,91·0,95=0,86

Из точки (С) - проводим прямую линию, до пересечения с изобарой, что соответствует давлению пара за ЦНД. Действительный процесс расширения пара в ЦНД, находим, зная относительный внутренний КПД части низкого давления.

Энтальпия пара в точке D0, кДж/кг.

iD0= iC0"-(iC0"- iк) зoiЦHД

iD0= 2616-(2616-2198.5)·0.8=2282

где iк - энтальпия пара в конце теоретического процесса расширения пара в ЦНД. Зная iD0 можно определить точку D0 на изобаре Рк.

Используя значения давлений в отборах, находим по диаграмме энтальпии пара в этих отборах.

На рисунке 2.2. построен процесс расширения пара в турбине.

2.1. 2 Определение параметров по элементам схемы

Определение параметров по элементам схемы покажем на примере ПВД-1. Потерю давления в паропроводах на пути от отбора турбины до п одогревателя принимаем 5%.

Давление пара у подогревателя ПВД-1 с учетом потерь, бар.

РПВД1=Ротб1·0,95=33,6·0,95=31,92,

Где Ротб1 - давление пара в отборе, бар.

Температура конденсата греющего пара за ПВД-1, С..

tПВД1= 237,3

Энтальпия конденсата греющего пара за ПВД-1, кДж/кг.

tПВД1= 993,34

Температура питательной воды за ПВД-1 с учетом недогрева, С.

tПВД1пв= tПВД1- QПВД1

tПВД1пв =237,3-2=235,3.

Энтальпия питательной воды за подогревателем, кДж/кг

tПВД1пв=984,97

Энтальпия греющего пара из отбора по i-s диаграмме, кДж/кг.

iотб1=3195,98

Использованный теплоперепад,кДж/кг.

hПВД1=i0-iотб1

где iо - энтальпия острого пара, кДж/кг.

hПВД1=3511,46-3195,98=315,48

Аналогичным образом рассчитываем другие элементы схемы.

Результаты расчета сводим в таблицу 2.1.

2.1.3 Расчет сетевой подогревательной установки

Рисунок 2.3 - Установка по подогреву сетевой воды

Тепловая мощность блока, МВт.

Qблmax =1330/5=266

Тепловая нагрузка отборов турбины составит, МВт.

Qпвк= Qблmax - Qотбтур=266-150 =116

Расход сетевой воды, кг/с.

Gс.в.= Qотбmax/C·?t

Gс.в =266000/4.186·(150-70)=793.56

Где С - теплоемкость сетевой воды, кДж/кг,

T- разность температур прямой и обратной сетевой воды, С.

Доля максимальной нагрузки, покрываемая отборами турбины.

бтэц= Qотбтур/ Qотбmax

бтэц =150/266=0,56

Энтальпия сетевой воды за (СП2) составляет, кДж/кг.

tсп2=tос+ Qотбтур/Gc.в.

tсп2=293,02+150000/793,56=454,88

где tос - энтальпия обратной сетевой воды, кДж/кг.

tос=70єС=> tос=70·4,186=293,02

Температура сетевой воды, ?С

tсп2= tсп2/4,186=454,88/4,186=109?

Температура конденсата пара из СП2 с учетом недогрева сетевой воды составит, ?С.

tсп2н= tсп2+ Qсп2=109+5=114

находим что давление в СП-2 РСП2"=1,64 бар

Давление отборного пара, с учетом потерь на транспорт, бар

Ротб6=Р отб сп2/0,92=1,64/0,92=1,78

Приняв равномерный нагрев сетевой воды в сетевых нагревателях. Определяем величину нагрева в каждом из них, С

T = =89.5-70=19,5

Температура воды за нижним сетевым подогревателем СП1, С

tСП1=tОС+Дt

tСП1=70+19,5=89,5

Температура конденсата пара из СП 1 с учетом недогрева сетевой воды составит, С

tсп1н= tсп1+ Qсп

tсп1н =89,5+5=94,5

находим давление в СП 1 РСП1"=0,84 бар

С учетом потери давления пара в трубопроводах давление в первом и втором теплофикационных отборах составит, бар

Рт1=0,84/0,92=0,91

Рт2=1,64/0,92=1,78

Энтальпия сетевой воды за нижним сетевым подогревателем СП 1:

tСП1=tСП1·С

tСП1=89,5·4,186=376,74 кДж/кг

2.1.4 Определение расходов пара на турбину

Определив энтальпию пара в отборах, рассчитываем значения расходов пара на подогревателе сетевой воды.

Расход пара на СП 2 составляет, кг/с

Dпс2=Gсв (tпс2-tпс1)/(iпс2-tк2)0,98

Dпс2=793,56 (454,88-376,74)/(2686,6-454,88)0,98 = 31,4

Расход пара на СП 1 составляет, кг/с

Dпс1= Gсв (tпс1-tос1)-Дпс2(tпс2-tпс1)0.98/(iпс1-tк1) 0,98

Dпс1=793,56 (376,74-293,3)-31,4(478,5-398.0)0,98/(2616,0-398,0)0,98 =30,46

Коэффициент недоиспользования мощности отопительных отборов:

Для первого ут1= =Нi-hотб7/Hi

ут1=1229,46-867,86/1229,46=0,294

Для второго ут2=Нi-hотб6/Hi

ут2= 1229.46-825,46/1229.46=0,328

где Нi- теплоперепад срабатываемый турбиной, кДж/кг;

hОТБ7 и hОТБ6- теплоперепады, срабатываемые до первого и второго теплофикационных отборов соответственно, кДж/кг

Принимаем коэффициент регенерации
Крег=1,19 с последующим уточнением

Расход пара на турбину, кг/с.

Dт= Крег·(+ Ут1 Dпс1+ Ут2Dпс2)

где Nэ - электрическая мощность турбоагрегата, кВт;

Dпс1 и Dпс2- расходы пара на тепло, кг/с.

Dт=1,19·(+0,294·31,4+0,328·30,4)=121,62

2.1.5 Расчет сепараторов непрерывной продувки

Рисунок 2.4 - Схема сепараторов непрерывной продувки

Расход пара на собственные нужды машинного зала, кг/с

Dм3сн= hм3сн· Dт

Dм3сн =0,01·121,62=1,22

Где hм3сн коэффициент расхода пара на собственные нужды машинного зала.

Производительность парогенератора нетто, кг/с

DПГн= Dт+Dснм3

DПГн =121,62+1,22=122,84

Производительность парогенератора брутто, кг/с

DПГбр= Dпг/(1- hсн)

DПГбр = 122,84/(1-0,012)=124,33

где hсн коэффициент расхода пара на собственны нужды котельного оборудования.

Расход пара на собственные нужды котельного отделения, кг/с

Dснко= DПГбр- DПГн

Dснко =124,33-122,84=1,49

Расход продувочной воды, кг/с

GПР= DПГбр· hПР

GПР =124,33·0,015=1,86

где hпр коэффициент расхода продувочной воды

Расход питательной воды, кг/с

GП.В.= DПГбр+ DПР

GП.В.=124,33+1,86=126,19

Выпар из расширителя первой ступени, кг/с

DРНП1= GПР(tпр-t"пр)/ i рнп1

DРНП1= 1,86 (1640,4-670.4)/ 2086,57= 0,86

где tпр энтальпия продувочной воды из барабана котла при давлении 130 бар, кДж/кг;

t"пр энтальпия продувочной воды из РНП1 при давлении в деаэраторе 6 бар, кДж/кг;

iРПН1 теплота парообразования при давлении Pg=6 бар, кДж/кг.

Расход продувочной воды в расширитель второй ступени, кг/с

Gпр"=Gпр-ДРПН1

Gпр"=1,86-0,86=1,00

Выпар из расширителя второй ступени, кг/с

DРНП2= G"пр. (t"пр-t""пр)/ i рнп2

DРНП2= 1,00(670,4-496,64)/2206,37=0,08

где t"пр энтальпия продувочной воды из РНП2 при давлении в ПНД6 равному 1,96 бар, кДж/кг;

iРПН2 теплота парообразования при давлении Ротб6=1,96 бар, кДж/кг.

Количество воды сливаемой в техническую канализацию, кг/с

Gпр"=Gпр"-DРПН1

Gпр"=1,00-0,08=0,92

Внутристанционные потери конденсата, кг/с

Gут =hут ·Dт

Gут =0,015·121,62=1,82

hут=1,5% коэффициент, учитывающий потери конденсата.

Расход химически очищенной воды, кг/с

Gхов=Gпр"+Gут+ Dснко

Gхов =0,92+1,82+1,49=4,23

Энтальпия химически очищенной воды после охладителя непрерывной продувки, кДж/кг

tдоб= tхов+ G""пр.(t""пр-tсл)/ Gхов

tдоб =4,186·30+0,92(496.64-251,4)/4,23=178,78

где tхов=tхов·С=30·4,186=125,58 кДж/кг энтальпия воды сливаемой в техническую канализацию.

2.1.6 Расчет регенеративной схемы ПВД

Регенеративная схема с подогревателем высокого давления представлена на рисунке 2.5

Рисунок 2.5 - Схема включения ПВД в регенеративную схему

Расход пара на ПВД-1 из уравнения теплового баланса, кг/с

D1= Gп.в.·(tпвд1- tпвд2)/ (iотб1- tотб1)· зто

D1= 126,19 (984,97- 897,14)/(3195,9-993,34) 0,98=5,73

где зТО КПД теплообменника;

tпвд1. - энтальпия питательной воды за ПВД 1, кДж/кг;

tпвд2. - энтальпия питательной воды за ПВД 2, кДж/кг;

iотб1 энтальпия пара из первого отбора, кДж/кг;

tотб1 энтальпия конденсата пара из первого отбора, кДж/кг.

Уравнение теплового баланса для ПВД 2

D1(tотб1- tотб2)· зто+ D2.·(iотб2- tотб2)· зто= Gп.в.·(tпвд2- tпвд3)

Отсюда расход пара на ПВД2 составит, кг/с

D2= Gп.в.·(tпвд2- tпвд3)- D1(tотб1- tотб2)· зто./(iотб2- tотб2)· зто

D2=126,19(897,14-751,71)-5,73(993,34-905,52)0,98/(3104,9-905,52)0,98=8,7

где tпвд3 энтальпия питательной воды за ПВД3, кДж/кг;

iотб2 энтальпия пара из второго отбора, кДж/кг;

tотб2 энтальпия конденсата из второго отбора, кДж/кг.

Тепловой баланс для ПВД 3

(D1+ D2)·(tотб2- tотб3)· зто+ D3·(iотб3- tотб3)· зто= Gп.в.·(tпвд3- tпв)

Энтальпию питательной воды на входе в ПВД3 определяем с учетом нагрева её в питательном насосе, кДж/кг

tпэн = tпв+?tпэн

Tпэн повышение энтальпии питательной воды в питательном насосе:

Tпэн =22590Дж/кг=22,59кДж/кг

Рпн =Рб-Рд

где?Рпн = (160-6+1)=153- перепад давления в питательном насосе, бар;

зПЭН КПД питательного насоса;

Vср - удельный объем воды, при температуре 158С, м/кг.

Энтальпия воды за питательным насосом, кДж/кг

tпвпэн=664,86+22,59=687,45

Расход пара на ПВД3, кг/с

D3 = 126,19 (751,71- 687,45) - (5,73 + 8,7) (905,52 - 766,08) 0,98 / (2966,8 -766,08) 0,98 = 2,91

iотб3 энтальпия пара из третьего отбора, кДж/кг;

tотб3 энтальпия конденсата пара из третьего отбора, кДж/кг.

2.1.7 Расчет деаэратора

Рисунок 2.6 - Схема деаэратора

Материальный баланс для деаэратора:

DПВД + DРНП1+ DД+ Gок+ Gдоб= Gп.в.+ Gут

где Dпвд=D1+D2+D3 - дренажи конденсата греющего пара ПВД 1,ПВД 2,ПВД 3 соответственно, кг/с;

Dрнп - выпар из РНП1, кг/с;

Dд - расход пара,из отбора на деаэратор,кг/с;

Gок - расход деаэрируемого конденсата из ПНД, кг/с;

Gдоб - расход добавочной воды, кг/с;

Gпв - расход питательной воды, кг/с;

Gут - потери питательной воды с утечками, кг/с.

16.34+0.86+Dд+Gок+4.23=126,19+1.82

Gок+Dд=106,58

Тепловой баланс для деаэратора:

DПВД· tотб3+DРНП1· iРНП1+ Дд· iотб3+ Gок·tпнд4 + Gдоб·tдоб=(Gп.в.+Gут) tп.в.

где tотб3 - энтальпия конденсата третьего отбора, кДж/кг;

iРНП1 - энтальпия выпара из РНП1, кДж/кг;

iотб3 - энтальпия греющего пара из третьего отбора, кДж/кг;

tпнд4 - энтальпия конденсата за ПНД-4, кДж/кг;

tдоб- - энтальпия химочищенной воды, кДж/кг;

tпв - энтальпия питательной воды после деаэратора, кДж/кг.

16,34х766,08+0,86х2086,57+Dд2966,8+Gок623,55+4,23х178,78=(126,19+1,82) 664,86

Dд 2966,8+Gок 623,55 = 70040,27

Gок + Dд =106,58

Решая эту систему, находим расходы пара и конденсата в деаэратор, кг/с.

Соответственно:

Dд =1,83 и Gок =105,05

2.1.8 Расчет регенеративной схемы ПНД

Рисунок 2.7 - схема включения групп ПНД

Уравнение теплового баланса для ПНД 4:

D4(iотб4- tотб4)· зто=Gок·(tпнд4- tпнд5) (2.1)

Отсюда находим расход пара на ПНД 4, кг/с.

D4= (Gок·(tпнд4- tпнд5)/ (iотб4- tотб4)· зто (2.2)

зтоКПД теплообменника

tпнд4 энтальпия основного конденсата за ПНД 4,кДж/кг;

tпнд5 энтальпия основного конденсата за ПНД 5, кДж/кг;

iотб4 энтальпия пара из 4-го отбора, кДж/кг;

tотб4энтальпия конденсата из 4-го отбора, кДж/кг;

Gок - расход основного конденсата в деаэратор, кДж/кг.

D4= 105,05(623,55-524,21)/(2831,6-640,2900,98=4,86

Уравнение теплового баланса для ПНД5:

D4·(tотб4- tотб5)· зто+ D5·(iотб5- tотб5)·зто=Gок(tпвд5- tсм1) (2.3)

В этом уравнении неизвестны две величины:

Расход пара из отбора на ПНД5=>D5 и энтальпия основного конденсата после первой точки смешения tсм1

Составим уравнения материального и теплового балансов для первой точки смешения и запишем все три уравнения в системе:

D4·(tотб4- tотб5)· зто+ D5·(iотб5- tотб5)·зто=Gок(tпвд5- tсм1) (2.4)

Gок=Gок"+Dрнп2+ D4+ D5+ D6 (2.5)

Gок· tсм1= Gок."·tпнд5+(Dрнп2+ D4+ D5+ D6)· tпнд6 (2.6)

В этой системе неизвестны 4 величины D5, tсм1, расход основного конденсата через ПНД6 Gок" и расход пара из отбора на ПНД6.

Добавим систему уравнение теплового баланса для ПНД6:

D4(tотб4- tотб5)·зто+ D5.·(iотб5- tотб5)· зто= Gок.·(tпнд5- tсм1) (2.7)

Gок=Gок"+Dрнп2+ D4+ D5+ D6 (2.8)

Gок· tсм1= Gок."·tпнд5+(Dрнп2+ D4+ D5+ D6)· tпнд6 (2.9)

·зто=Gок."·(tпнд6- tсм2) (2.10)

В этой системе неизвестны 5 величин: D5, tсм1, Gок", D4 и энтальпия основного конденсата после второй точки смешения tсм2.

Добавим в систему уравнений уравнения материального и теплового балансов для второй точки смешения:

D4-(tотб4-tотб5)· зто+ D5.·(iотб5- tотб5)· зто= Gок.·(tпндl5- tсм1) (2.11)

Gок=Gок"+Dрнп2+D4+D5+ D6 (2.12)

Gок·tсм1=Gок."·tпнд5+(Dрнп2+ D4+ D5+ D6)· tпнд6 (2.13)

·зто=Gок."·(tпнд6- tсм2)

Gок"·tсм2Gок.·tпнд+(Dт1+Dт2)· tсм1" (2.15)

Gок"·tсм2=Gок."·tокпнд7+(Dт1+Dт2)·tпс (2.16)

В получившейся системе имеем 6 неизвестных величин: D5, tсм1, Gок", D6, tсм2, Gок"

Предварительно оцениваем энтальпию основного конденсата после первой точки смешения tсм1 =483 кДж/кг с последующей проверкой по балансу. Определяем расход пара на ПВД-5, кг/с:

D5= D4·(tотб4-tотб5)·зто -Gок.·(tпнд5- tсм1)/.·(iотб5- tотб5)· зто (2.17)

D5= 4,86(640,29-540,96)0.98-105,05(524-483)/(2726-540.96)=1,786

где iотб5энтальпия пара из пятого отбора, кДж/кг;

tотб5энтальпия конденсата пара из пятого отбора, кДж/кг.

Выразим из уравнения (2.12) расход пара из отбора на ПНД6, кг/с

D6=Gок- Gок- Dрнп2-D4- D5 (2.18)

Подставив полученное выражение в уравнение (2.14)

Gок·(tпвд6- tсм2)=[(Gок- Gок"-Dрнп2- D4- D5)· (iотб6- tотб6)+ Dрнп2·(iотб2- tотб2)+

(D4+D5)·(tотб5- tотб6)]· зто (2.19)

где tпвд6 -энтальпия основного конденсата после ПНД-6, кДж/кг;

tсм2 -энтальпия основного конденсата в точке смешения, кДж/кг;

Gок" - расход основного конденсата через ПНД-6, кг/с.

Выразим из него энтальпию основного конденсата после второй точки смешения:

tсм2=tпнд6[(Gок-G"ок-Dрнп2-D4-D5) (iотб6- tотб6)+ Dрнп2·(iотб2- tотб2)+ / G"ок

(D4+D5)·(tотб5- tотб6)]· з / G"ок (2.20)

Полученное выражение подставим в уравнение (2.16)

Gок (tпнд6[(Gок-G"ок-Dрнп2-D4-D5) (iотб6- tотб6)+ Dрнп2·(iотб2- tотб2)+ / G"ок= Gок."·tпнд7+(Dт1 Dт2)· tсм1 (2.21)

Упростим выражение, раскрыв скобки из первой части

Gок"·tпнд6+[(Gок- Gок"-Dрнп2-D4- D5)·(iотб6- tотб6)+ Dрнп2·(iрнп2- tотб6)+(D4+D5)·(tотб5-tотб6)]·зто= Gок"· tпнд7+(Dт1+Dт2)· tсм1 (2.22)

Из этого уравнения выразим расход основного конденсата через ПНД-7, кг/с

Gок"= Gок"·tпнд6+[(Gок- Gок"-Dрнп2-D4- D5)·(iотб6- tотб6)+ Dрнп2·(iрнп2- tотб6)+(D4+ D5)·(tотб5- tотб6)]·зто -(Dт1-Dт2)· tсм1 / tпнд7 (2.23)

Таким образом мы получим уравнение в котором неизвестна только одна величинарасход основного конденсата через ПНД6.

Подставляя численные значения в уравнение (2.23) находим методом подбора расход основного конденсата через ПНД-6, кг/с

Подставив это значение в уравнение (2.18) найдем расход пара из отбора на ПНД-6, кг/с

D6=Gок-Gок"-Dрнп2-D4-D5

D6=105,05-84,32-0,08-4,86-1,786=14,00

Уточним значение энтальпии основного конденсата после первой точки смешения, подставив численные значения Gок", D5 и D6 в уравнение системы (2.13)

tсм1= Gок."·tпнд5+(Dрнп2+ D4+ D5+ D6)· tпнд6 / tсм 1

Итого энтальпия в точке смешения равна, кДж/кг

tсм1= 84,32 479,72+(0,08+4,86+1,786+14,00)496,46/105,05 =483,00

Ошибки расхождения между принятым tсм1=483 кДж/кг и получившимся нет.

Расхождений с предварительно оцененным значением нет, поэтому нет необходимости повторно рассчитывать ранее найденные значения расходов Gок", D5 и D6.

Расход основного конденсата через ПНД7,кг/с

Gок"= Gок"-Dт1-Dт2

Gок"=84,32-31,4-33,4=19,32

Уравнение теплового баланса для ПНД7:

Gок"·(tпнд7- tк)= D7·(iотб7-tотб7)· зто

где tкэнтальпия основного конденсата после охладителей пара с

с уплотнения эжектора, кДж/кг

tк= tн+?tсп+эж

tк =147,6+50,16=197,76

где?tсп+эж=12°С недогрев воды в сальниковых и эжекторном подогревателях

tн - энтальпия конденсата после коденсатора, кДж/кг

Расход пара из отбора на ПНД7, кг/с

D7= Gок"·(tпнд7- tк)/ (iотб7-tотб7)· зто

D7= 19,92(388,8-197,76)/(2616,6-396,83)0,98=1,6

где iотб7 энтальпия пара из седьмого отбора, кДж/кг;

tотб7энтальпия конденсата пара из седьмого отбора, кДж/кг.

Расход пара в конденсатор, кг/с

Рк= Gок"- D7

Рк =19,32-1,6=17,32

Проверка материального баланса пара на турбину, кг/с

Dт=Dк+D1+D2+D3+Dд+D4+D5+D6+D7+Dт1+Dт2

Dт =17,32+5,73+8,7+2,91+1,83+4,86++1,786+14,00+1,7+31,4+34,4=120,96

120,96-121,62·100% /120,96= 0,54%

Проверка по балансу мощности

Внутренняя мощность турбины,МВт

Ni=5,73·315,48+8,7·406,55+(2,91+1,83)·544,57+(14,0+33,4)·679,77+1,786785,4+14,00·824,4+(1,6+31,4)·894,4+17,32·1229,46=103,039

Электрическая мощность турбоагрегата, МВт

Nэ =103,039·0,98=100,97

Небаланс мощности, МВт

N=Nэ-Nэном

N =100-100,97=0,97

Уточняем расход пара на турбину, кг/с

Dт= Крег·

Dт =1,19·100,97/1229,46 0,98=0,099

Уточнение расхода пара, кг/с

Dт"=121,62+0,099=121,719

Уточняем коэффициент регенерации:

Крег"= Крег·(Dт"/ Dт)

Крег"=1,19(121,719/120,62)=1,2008

Ошибка расхождений:

1,2008-1.19·100% /1,19= 0,9075%

Ошибка не значительная, поэтому пересчета не требуется.

2.2 Расчет показателей тепловой экономичности ТЭЦ

Расход тепла на котёл, кВт:

где Qт- - тепловая мощность котла, МВт;

Dт - производительность котла по пару, кг/с;

Dпр - расход продувочной воды, кг/с

Полный расход топлива, кг/с:

Полный расход тепла на турбоустановку, кВт:

121,719(3511,46-984,97)+0,86(2756,55-984,37)+0,08(2704,84-984,97)-

4,23(984,97-178,78)=305942,199

где Qту - расходуемая тепловая мощность,МВт;

Dт - расход перегретого пара на турбоустановку, кг/с;

Dрнп - расход выпара из расширителей непрерывной продувки, кг/с;

Gхов - расход добавочной воды, кг/с;

hпв - энтальпия питательной воды, кДж/кг;

i0 - энтальпия перегретого пара, кДж/кг;

hхов - энтальпия добавочной воды, кДж/кг;

Тепло отдаваемое тепловому потребителю, кВт:

Qт=Dт1·(iотб7-tс.в)+Dт2·(iотб6- tс.в)

Qт =33,4(2616,6-293)+31,4(2686,6-293)=158224,906

где Qт - тепло отдаваемое тепловому потребителю, кВт;

Dт1, Dт2 - расходы пара на сетевые подогреватели, кг/с;

tсв - энтальпия обратной сетевой воды, кДж/кг.

Затраты тепла на выработку электроэнергии, кВт.

Qтуэ=Qту-Qт

Qтуэ =305942,199-158224,906=147717,293

Расход топлива на выработку электроэнергии, кг/с:

Удельный расход топлива на выработку электроэнергии, кг/кВт·ч:

Расход топлива на выработку тепла, кг/с:

Удельный расход топлива на выработку тепла, кг/ГДж:

Пересчет на условное топливо:

2.3 Выбор вспомогательного оборудования

2.3.1 Регенеративные подогреватели

Тип и мощность, устанавливаемой турбины, предопределяют типы отдельных элементов вспомогательного оборудования, так как заводы изготовители турбин поставляют их вместе со вспомогательным оборудованием по типовой спецификации для каждой турбины.

Подогреватели высокого и низкого давления выбираем по заводским данным, для турбины Т-100/120-130-3 так их характеристики удовлетворяют значениям, полученным в ходе расчета ПТС.

ПВД 1: ПВ42523037,

где 425площадь нагрева, м 2 ;

230максимальное давление в трубной системе, бар;

35максимальное давление в корпусе, бар.

ПВД 2: ПВ42523025;

ПВД 3: ПВ42523013:

Подогреватели низкого давления выбираем по

ПНД 4: ПН250167IV;

ПНД 5: ПН250167IV;

ПНД 6: ПН250167IV;

ПНД 7: ПН250167III;

2.3.2 Деаэратор

Деаэраторы выбирают по пропускной способности деаэрационной колонки /3/. Объем баков рассчитывается на пятиминутный запас воды.

Выбираем деаэратор смешивающего типа повышенного давления ДСП500М с характеристиками:

емкость 10,5 м 3 ;

давление 6 бар;

производительность 500 т/ч;

аккумуляторный бак:

емкость 100 м 3 ;

давление 7 бар.

2.3.3 Сетевые подогреватели

Сетевые подогреватели устанавливаются без резерва. Выбор ведется по пропускной способности пара и воды с учетом их давлений. Выбор производим по /3/.

Нижний сетевой подогреватель:

ПСГ-2300-2-8-1

ПСГ - подогреватель сетевой горизонтальный;

2- давление пара, бар;

давление пара Рп = 0,03-0,2 Мпа;

давление воды Рв - 0,88 Мпа;

максимальная температура сетевой воды на входе t =115С

Верхний сетевой подогреватель:

ПСГ-2300-3-8-2

где ПСГ - подогреватель сетевой горизонтальный;

2300- площадь поверхности теплообмена, м;

3- давление пара,бар;

8- давление сетевой воды, бар;

номинальный расход сетевой воды - G = 972,2 кг/с;

номинальный расход пара - D = 47,2 кг/с;

давление пара Рп = 0,06-0,25 Мпа;

давление воды Рв - 0,88 Мпа;

максимальная температура сетевой воды на входе t = 120С

2.3.4 Выбор питательных насосов

Питательный насос выбираем по производительности (с запасом 7%) и напору, м/ч

G=G·1,07·3,6=121,62·1,07·3,6=509,7

H=1,4· Р0=1,4·127,5=178,51 м.вод.ст.

Для блоков с давлением пара 15Мпа и мощностью до 200МВт устанавливают один насос с электроприводом и гидромуфтой.

Выбираем питательный электронасос ПЭ 580185 с характеристиками:

где производительность580 м/ч;

напор2030 м вод.ст.;

частота вращения 2904 об./мин;

Мощность электродвигателя ПЭН

где Dпроизводительность, м 3 /с;

Рн- мощность электродвигателя ПЭН, МВт;

гплотность питательной воды , кг/м3

2.3.5 Выбор конденсатных насосов

Устанавливаем два конденсатных насоса, по 100% производительности каждый. Насосы выбираются по производительности (расход конденсата в летний период) без отопительного отбора, но с учетом регенерации и напора.

D=(17,32+33,4+31,4)3,6=304,8

где D - производительность насоса, т/ч

Не имея точных данных, для определения напора КН, принимаем, равным 80 м.вод.ст.

Выбираем конденсатные насосы КсВ 320160 с характеристиками:

подача 320 м 3 /4;

напор 160 м.вод.ст.;

частота вращения 1500 об/мин;

мощность 185 кВт;

2.3.6 Выбор циркуляционных насосов

Расход циркуляционной воды на одну турбину по заводским данным составляет: 16000 м 3 /ч.

Число блоков на станции - 5. Насосы размещаем в центральной береговой насосной (четыре штуки), так как их установка в машинном зале, из расчета два насоса на один блок, потребует большего количества насосов.

Расчетный расход цирк. воды на ТЭЦ составит:

Q=5·16000=80 м 3 /ч

Выбираем насосы типа ОП2110 с характеристиками:

производительность Q =21960 м 3 /4;

полный напор 16,2 м.вод.ст.;

число оборотов 485 об/мин;

Необходимое количество насосов на береговой, шт

П=Qр/Q=80000/21960=4

Мощность электродвигателя, кВт

2.3.7 Выбор сетевых насосов

Выбор производится по производительности и напору. Сетевые насосы устанавливаем из расчета два штуки на турбину, рассчитывая их на 50% производительность.

Производительность СН, м 3

G=Gсв/2 3,6=793,56/2 3,6=1428,4

Не имея точных данных, для определения напора СН принимаем равным 60 м.вод.ст. выбираем СН СЭ 180070 с характеристиками:

подача 1800 м 3 /4;

напор 70 м.вод.ст.;

частота вращения 1500 об/мин;

мощность 295 кВт;

3. Генплан и компоновка главного корпуса. Разработка схем топливоподачи, пылеприготовления, золошлакоудаления, водоснабжения

3.1 Проектирование топливного хозяйства

В качестве топлива на ТЭЦ по заданию используется бурый уголь Б2. Ирша-Бородинского месторождения со следующими характеристиками.

Таблица 4.1 Характеристики угля

Qнр,кДж/кг

По t3=1230?C выбираем на устанавливаемом котлоагрегате твердый тип шлакоудаления .

3.1.1 Определение расходов топлива на ТЭЦ

Расчетный расход топлива на работу парогенератора определяются из следующего соотношения:

Врас = Dпе·(iпе- tп.в.)+Dпр(tпр- tп.в.)/ Qр

Врас=121,719(3511,46-984,97)+1,86(1640,4-984,97)/15700 0,912=21,55

где Врос - расчетный расход топлива, кг/с;

Dпе - производительность котла по пару, кг/с;

Dпр - расход продувочной воды, кг/с;

Qр - низшая теплота сгорания топлива, кДж/кг

Часовой расход топлива на ТЭЦ составляет, т/ч.

В?= Врас·n

В?= 21,55·5=107,79 · 3,6 =387,9

где nчисло котлов на ТЭЦ.

3.1.2 Приемноразгрузочное устройство

По расходу топлива на станции используем два вагоноопрокидывателя роторного трех опорного типа, один из которых - резервный. Характеристики вагоноопрокидывателя:

число опрокидываний за 1 ч30;

теоретическая производительность 2790/1800 м/ч (при разгрузке 90 т, 60т вагонов, соответственно);

мощность электродвигателя 2х36 кВт.

Применение вагоноопрокидывателей экономически целесообразно на тепловых электростанциях с расходом топлива свыше 150 т/ч. Разгрузочное устройства с вагоноопрокидывателями позволяют снизить количество эксплуатационного персонала, занятого на разгрузке, уменьшить длительность простоя ж/д полувагонов на территории ТЭЦ, разгружать большое количество топлива в минимально короткие сроки.

В России разработаны и применяют следующие типы вагоноопрокидывателей:

роторный (круговой) - разгружает вагоны поворотом их вокруг продольной оси на угол до 175?;

боковой - разгружает вагоны подъемом и опрокидыванием их поворотом на консольной платформе;

торцевой - разгружает вагоны наклоном их в сторону одного из торцов.

Для разгрузки вагонов грузоподъемностью до 125 т применяют разгрузочные устройства с роторными вагоноопрокидывателями. Производительность таких вагоноопрокидывателей принимается исходя из 10 циклов в час, т.е. 10 вагонов грузоподъемностью 93 и 125 т, и 12 циклов в час для вагонов грузоподъемностью 60 т. При поступлении вагонов различной грузоподъемности за расчетный вагон условно принимается вагон средневзвешенной грузоподъемности.

Топливо (уголь, сланец) разгружается из вагонов в приемный бункер, расположенный под вагоноопрокидывателем. Для предотвращения налипания и зависания топлива, стенки бункера обогреваются. Верхняя часть бункера перекрыта решетками, размер ячейки которых зависит от крупности поступающего топлива.

Для мелкого топлива размер ячейки принимается 350х350 мм, для крупнокускового550х550 мм. Угол наклона стенок бункера должен быть не менее 55?. Из бункеров топливо подается ленточными питателями. Если после питателей для предварительного дробления крупнокускового топлива устанавливают дискозубчатые дробилки, то для предотвращения их поломок от случайных металлических предметов, попавших в топливо, в качестве приводного барабана питателей применяют шкивной магнитный сепаратор. Надвиг груженных вагонов в вагоноопрокидыватель и откатка порожних - механизированы. Управление вагоноопрокидывателем и механизмами по надвигу и откатке вагонов осуществляется оператором со щита управления, расположенного в разгрузочном устройстве.

Для дробления крупных кусков и смерзшихся глыб топлива на решетках бункеров устанавливают дробильно фрезерные машины, а для зачистки вагонов от остатков топлива на вогоноопрокидывателе установлены вибраторы.

3.1.3 Ленточные конвейеры

Суточный расход топлива на станции составляет, т

Всут= В?·24

Всут =387,9·24=9309,6

Топливо подается в котельный цех двумя параллельными линиями (нитками) ленточных конвейеров, одна из которых рабочая, другая резервная.

Расчетная производительность (часовая) каждой нити, т/ч.

Врас= Всут/Т

Врас =9309,6/21=443,3

где Т число часов работы топливоподачи, ч.

Производительность ленточного конвейера (Т/4) приближенно определяется, т/ч

Вл= в2·с·г· КL

где в ширина ленты;

с скорость ленты, м/с;

г рассыпной вес топлива, т/ м 3 ;

Кб коэффициент, учитывающий угол естественного откоса топлива на ленте.

Принимаем в =1000 мм; с =2 м/с ; г =0,85 т/ м 3

Кб - (при использовании ленты конвейера желобного типа и значении угла естественного откоса для бурого угля 45? )

Вл= 1·2·0,85·375=657,5

Мощность на вал проводного барабана ленточного конвейера без сбрасывающего устройства, кВт определяем по формуле:

где zдлина конвейера между центрами приводного и концевого барабанов, м;

Нвысота подъема по вертикали между центрами приводного и концевого барабанов, м;

Кzкоэффициент, зависящий от длины лент;

К1 коэффициент, зависящий от ширины лент;

Принимаем длину конвейера z =50 м;

высота подъема Н =5 м; Кz=1; К1=515 .

Мощность на валу приводного барабана:

Wб=[(515 х 50 х2 +2 х 657,5 х 50 +37 х 657,5х5) /(1000 х 1,36)] х1 =175,65

где Вл производительность конвейера, т/ч.

Мощность, потребляемая электродвигателем приводного станции, кВт:

Wэл=1,25 х175,65/0,95 х 0,96 = 240,75

где К3 - коэффициент запаса ;

зэд - КПД электродвигателя ;

зд - КПД редуктора .

3.1.4 Дробилки

Принимаем на проектируемой станции двухступенчатое дробление. Ввиду высокой влажности топлива, используем молотковые мельницы, с подвижной дробильной и отбойной плитами и с очистными устройствами. По расходу топлива на котлоагрегат Врас=77,4 т/ч выбираем производительность 67ч105 т/ч дробление типа СМ19А с характеристиками:

производительность - 67ч105 т/ч;

диаметр ротора -1000 мм;

длина ротора -800 мм;

частота вращения -1000 об/мин;

мощность электродвигателя -125 кВт.

Емкость бункера сырого угля, м3

Vб =21,55 х 5/0,85 0,8=158,45

где К3 коэффициент заполнения примесей ;

ч число часов работы котлоагрегата на топливе, занесенном в бункере.

Для передачи угля из бункера использует ленточный питатель с шириной ленты 400 мм, длиной 3,2 м. Производительность при высоте слоя 0,2 м3580 м 3 /ч;

требуемая мощность1кВт.

3.1.5 Топливные склады

Для обеспечения электростанции топливом создают резервные его запасы: оперативный резерв в бункерах главного корпуса и в расходном складе, долговремнный резерв на резервном складе.

Для ГРЭС и ТЭЦ емкость склада угля принимается в расчете на месячный расход, исчисляемый исходя из 20-часовой работы в сутки всех рабочих парогенераторов.

Топливо на складе укладывают в штабеля. Форма штабелей угля на плане зависит от занимаемой складом территории и от типа применяемых на складе основных механизмов. Высота штабелей для этого топлива не ограничивается, и обуславливается лишь техническими возможностями складских механизмов.

Площадь, непосредственно занятую топливным складом, рассчитываем по формуле, м 2

где nчисло суток запаса топлива на складе;

hвысота штабеля, м;

цкоэффициент учитывающий угол естественного сползания топлива в штабеле;

Принимаем: n=30 сут; h=15 м; ц=0,85.

F=(24 х 387,9 х30)/ (15 х0,85 х 0,85) =25770,5

3.2 Выбор механизмов системы пылеприготовления

Для Ирша-Бородинского бурого угля принимаем схему пылеприготовления с прямым вдуванием с молотковыми мельницами. Устанавливаем по 3 мельницы на котел, при этом расчетная производительность каждой из них составляет 135%.

Расчетная производительность мельницы, т/ч.

1,35 х77,5 /3 х 1,1=31,7

где Клокоэффициент размолоспособности ;

n- число мельниц, шт.

Принимаем молотковые тангенциальные мельницы ММТ2000/2590/590 с характеристиками:

Производительность 40 т/ч;

диаметр ротора 2000 м;

длина ротора 2590 м;

частота вращения 590 об/мин;

мощность электродвигателя 630 кВт.

3.2.1 Дутьевые вентиляторы и дымососы

Устанавливаем один дымосос и один вентилятор. Дутьевой вентилятор и дымосос выбираются по производительности и напору, м 3 /с

Vвнсб=1,05·Вр·V0(бт·? бт? бпп+? бввп)· ;

V0 теоретическое количество воздуха по табл. 2.1;

бт коэффициент избытка воздуха в топке ;

Бпп присос воздуха в систему пылеприготовления;

Бввп относительная утечка воздуха ;

tхв температура холодного воздуха, С;

Vвнсб=1,05·20,68·3,62·(1,2-0,08-0+0,05)·=102,07

Расчетная производительность дымососа:

VД= Вр·

Vг0 теоретический объем продуктов сгорания [табл.2];

бD коэффициент избытка воздуха перед дымососом;

tg температура газов у дымососа, ?С;

VД= 21.55· =208,87

Расчетный напор РВ и дымососа, кПа

Н=1,1? Нпот,

где Нпот суммарный перепад давления по воздушному и газопроводному тракту с учетом самотяги вертикальных участков.

Принимаем суммарный перепад давления по воздушному тракту Нпот=4кПа .

Расчетный напор дутьевого вентилятора:

Выбираем дутьевой вентилятор типа ВДН18 11у с характеристиками:

производительность -117/88 м 3 /с;

полное давление - 3500/2000 Па;

температура газа - 30?С

частота вращения -980/740 об/мин;

мощность - 200/85 кВт.

Принимаем суммарный перепад давления по газопроводному тракту Нпот=3 кПа .

Тогда расчетный напор дымососа, кПа

Выбираем дымосос типа ДН22х2 с характеристиками:

производительность285 м 3 /с;

полное давление 3300 Па;

температура газа 200?С

частота вращения 744 об/мин;

мощность 345 кВт.

Рисунок 3.1 Схема топливоподачи пылеугольной ТЭЦ

1 - размораживающее устройство; 2 - электротележка - толкатель; 3 - разгрузочное устройство; 4 - конвейеры от разгрузочного устройства; 5 - узел пересыпки; 6 - конвейеры в дробильный корпус; 7 - дробильный корпус; 8 - конвейеры в главный корпус; 9 - главный корпус; 10 - конвейер на склад; 11 - конвейер со склада; 12 - загрузочный бункер; 13 - узел пересыпки; 14 - конвейер в узел пересыпки; 15 - погрузочная машина; 16 - склад топлива

3.3 Золоулавливание

Улавливание твердых частиц из потока дымовых газов осуществляется электрофильтрами, четырехпольными горизонтальными ПГД4х50, при этом скорость газов в активном сечении составит 1,3 м/с, что позволяет электрофильтрам работать с КПД около 98% .

Выбор в качестве золоулавливающего устройства электрофильтров обусловлен следующими причинами:

Расход летучей золы на входе в фильтр кг/ч:

Мзолвх=0,01·В·Qун Ар+0,01·В·qн·Qн/32700=0,01· 77580·0,95 · 6+0,01·77580·0,5·15700/32700=4422,25

где В часовой расход сжигаемого топлива, кг/ч;

Qун доля золы, уносимая газами ;

qн потеря тепла с механическим недожогом .

Расход летучей золы в дымовую трубу, кг/ч

Мзолвх= Мзолвх·

Мзолвх =4422,25·=88,136

где ззуКПД золоуловителей.

Расход золы удаляемой гидрозолоудалением, кг/ч

Мзол= Мзолвх- Мзолвых

Мзол =4422,25-88,136=4334,114

Выбираем электрофильтры три /3/ типа:

ПГД - 4 х 50;

габариты - 20,2х10х15,

число секций -2шт;

вес механического оборудования -148,1 т;

с горизонтальным ходом газов.

3.4 Золоудаление

Удаление шлака из под топок, устанавливаемых котлоагрегатов, осуществляется непрерывно, с помощью шнекового транспортера, передвигающегося в заполненной водой ванне. С транспортера шлак сбрасывается на шлакодробилку, где дробится на куски не более 50 мм, затем поступает в самотечный канал. Для транспортирования золы и шлака за пределы станции применяются багерные насосы. Транспортирование шлака и золы на золоотвал осуществляется по общему трубопроводу .

Сжигание на электростанциях твердого топлива приводит к большому выходу золошлаковых материалов, требующих утилизации. Для сбора золы и шлака котельных установок, отпуска их потребителю, транспорта золошлаковых материалов внутри здания главного корпуса, на площадке ТЭЦ и за ее пределами, для складирования их в золоотвалах и предотвращения вредного воздействия последних на окружающую среду создают системы золошлакоудаления, образующие золовое хозяйство станции. Показатели системы ГЗШУ должны быть допустимыми в экономическом и эффективном отношении. После гидротранспорта шлак складируется на поверхности земли в золоотвалах.

В системе гидрозолошлакоудаления для подачи воды используют следующие группы насосов: смывные насосыдля подачи воды к побудительным соплам в каналах. В насосах осветленной воды устанавливают два рабочих и один резервный насос.

Для осветления сточной воды золоотвалов до состояния, позволяющего использовать в оборотном водоснабжении системы ГЗУ, на золоотвалах оборудуют отстойные пруды.

Суммарное количество золы и шлака, удаляемого со станции, кг/ч

Мшл.з.=0,01·В·(Ар+qн·

0,01·77580·(6+0,5·15700/32700) =4528,07

Расход воды,кг/ч

Мв= 12· Мшл.з

Мв =12·4528,07=54336,84

Расчетный расход пульпы,м3/ч

Q= Мшл.з / гшл,зол. +Мв / гв

Q =4,528/0,5+54,336/1=62,852

Где гшл, зол, гвсоответственно удельный вес шлака, золы, воды, т/м3.

Диаметр шлакопровода, м.

d =4х62,852/3600х3,14х1,7=0,115

Расчетный расход пульпы для пяти котлов,м/ч

Q =62,852х5=314.26

где V расчетная скорость потока пульпы , м/с.

По расчетному расходу пульпы выбираем багерный насос типа Гру-12;

Производительность 250-500 м3/ч;

давление на выходе из насоса - 0,21-0,17Мпа;

мощность на валу насоса - 26,4- 46,2 кВт;

мощность 55 кВт;

число оборотов 985 об/мин.

В багерной насосной устанавливаем 3 насоса: один рабочий, один резервный, один в ремонте.

В системе ГЗШУ для подачи воды используются следующие группы насосов:

Смывные насосы - для подачи воды к побудительным соплам в каналах. В насосах осветленной воды устанавливают один рабочий и один резервный насос. Для осветления сточной воды золоотвалов до состояния, позволяющего использовать в оборотном водоснабжении системы ГЗШУ,на золоотвалах оборудуются отстойные пруды.

3.5 Расчет выбросов и выбор дымовой трубы

Выбор высоты и количество устанавливаемых труб производятся таким образом, чтобы загрязнение слоя воздуха выбросами из труб не превышает ПДК вредных примесей.

Выбросы золы, г/с.

Мзол =38700х 0,36·[()··0.95++]=63,8

Выбросы оксидов серы, г/с.

МSO2=0,02 х 38700х 0,36··0,2=413,6

Выбросы оксидов азота, г/с.

МNO2=0.34· 10-7·K·B· Qнр·(1- q4/100)·B·(1- E1·r)· В2·В3·Ес=

0,34·10-7·4,771·107750·15700(1-0,5/100)·10775·(1-0,005·0,3)·0,85·1·0,75=61

где К коэффициент,характеризующий выход оксидов азота ;

В расход топлива, г/с;

В1 коэффициент, учитывающий влияние на выход оксидов азота качества сжигания топлива , ;

У1 коэффициент, характеризующийэффективность воздействия рецеркули-руемых газов ;

R степень рецеркуляции дымовых газов ;

В2 коэффициент, учитывающий конструкцию горелок ;

В3 коэффициент, характеризующий снижение выбросов.

Приведенная масса вредных примесей, г/с.

М=MSO2+· MNO2+ Мзол =413,6+61+63,8=538,4

Суммарная масса вредных примесей пересчитывается на выбросы оксидов серы. Отношение среднесуточных ПДК в этой формуле является коэффициентом, учитывающим вредность золы и оксидов азота по сравнению с оксидами серы.

Минимально допустимая высота дымовой трубы, м.

где А коэффициент, учитывающий условия вертикального и горизонтального рассеяния (конвентивной диффузии) примеси в воздухе, принимаем равным ;

Fкоэффициент, учитывающий характер выбрасываемых загрязнений, принимаем ;

m коэффициент, учитывающий влияние скорости выхода газов из устья трубы, по высоте предварительно выбранной трубы, принимаем ;

nчисло труб;

Vсуммарный объем дымовых газов, выбрасываемых из труб равен, м3/с

V=5·Vg=3·150,2=753

Tразность температур выходящих из трубы дымовых газов и окружающего воздуха, принимаем;

Эффективная высота выброса дымовых газов, м.

Hэф= H+ДН=Н+1,9·;

где d6диаметр устья трубы;

W0скорость газов в устье трубы по высоте выбранной трубы, м/с ;

Vскорость ветра на высоте 10 м над уровнем земли, принимаем, м/с ;

ц коэффициент, учитывающий возрастание скорости ветра с высотой трубы, по высоте выбираемой дымовой трубы, принимаем ;

Подобные документы

    Экономическое обоснование строительства ТЭЦ. Выбор и расчет тепловой схемы, котлоагрегата, основного и вспомогательного оборудования энергоустановки, топливного хозяйства и водоснабжения, электрической части. Разработка генерального плана станции.

    дипломная работа , добавлен 02.09.2010

    Обоснование строительства электрической станции и выбор основного оборудования. Величины тепловых нагрузок. Выбор оборудования, расчет годового расхода топлива на ТЭЦ. Схема котлов. Расчет теплогенерирующей установки. Водоподготовительная установка.

    дипломная работа , добавлен 01.10.2016

    Выбор основного энергетического оборудования, паровых турбин. Высотная компоновка бункерно-деаэраторного отделения электростанции. Сооружения и оборудование топливоподачи и системы пылеприготовления. Вспомогательные сооружения тепловой электростанции.

    курсовая работа , добавлен 28.05.2014

    Технико-экономическое обоснование строительства атомной электростанции, расчет показателей эффективности инвестиционного проекта. Характеристика электрических нагрузок района. Параметры тепловой схемы станции. Автоматическое регулирование мощности блока.

    дипломная работа , добавлен 16.06.2013

    Выбор основного оборудования и разработка вариантов схем выдачи энергии. Технико-экономическое обоснование главной схемы электрических соединений. Расчет токов короткого замыкания для аппаратов и токоведущих частей. Выбор измерительных приборов.

    курсовая работа , добавлен 09.04.2012

    Принципы и классификация компоновок по степени закрытости здания. Компоновка главного корпуса с продольным и поперечным расположениями турбин, двухпролетным машинным залом. План главного корпуса станции с котлами ТГМП-314 и турбинами Т-250-300-240.

    презентация , добавлен 08.02.2014

    Выбор основного оборудования на станции, главной схемы станции, трансформаторов, электрических принципиальных схем РУ разных напряжений. Технико-экономическое сравнение вариантов схем ТЭЦ. Выбор схемы и трансформаторов собственных нужд электростанции.

    курсовая работа , добавлен 03.10.2008

    Выбор и расчет тепловой схемы. Характеристика оборудования по водоводяному и газовоздушному тракту. Расчёт и выбор теплообменников, топливоподачи с ленточным конвейером. Автоматизация котла КВ-ТС-20. Расчет технико-экономических показателей котельной.

    дипломная работа , добавлен 30.07.2011

    Проект ТЭЦ для города Минска. Выбор оборудования тепловой и электрической частей, топливного хозяйства и системы технического водоснабжения, водно-химического режима. Экономическое обоснование реконструкции электростанции. Разработка инвариантных САР.

    дипломная работа , добавлен 08.04.2014

    Теплоэлектроцентраль как разновидность тепловой электростанции: знакомство с принципом работы, особенности строительства. Рассмотрение проблем выбора типа турбины и определения необходимых нагрузок. Общая характеристика принципиальной тепловой схемы.