Энергетическая система россии. Единая энергетическая система россии

Введение

Россия - единственная среди крупных промышленно развитых стран мира, которая не только полностью обеспечена топливно-энергетическими ресурсами, но и в значительных размерах экспортирует топливо и электроэнергию. Велика ее доля в мировом балансе топливно-энергетических ресурсов, например по разведанным запасам нефти - около 10%, природного газа - более 40 % .

Россия находится на первом месте в мире по добыче природного газа, занимает третье место по добыче нефти (после США и Саудовской Аравии).

Энергетика - важнейшее звено в цепи преобразований, вызванных переходом России к рыночной экономике. Свободные цены на энергоносители (приближающиеся к ценам мирового рынка) существенно влияют как на материальное производство, так и на непроизводственную сферу.

Предметом исследования данной работы является энергетическая система России.

С этой целью даётся описание характеристики энергетической системы России, её оперативно-диспетчерское управление, выявляются основные проблемы энергетической системы России.

1. Характеристика структуры Единой энергетической системы России

1 Что такое ЕЭС России

Единая Энергетическая Система России (ЕЭС России) - совокупность производственных и иных имущественных объектов электроэнергетики, связанных единым процессом производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии) и передачи электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике.

Полное определение Единой энергосистемы дает ГОСТ 21027-75.

Единая энергосистема - это совокупность объединённых энергосистем (ОЭС), соединённых межсистемными связями, охватывающая значительную часть территории страны при общем режиме работы и имеющая диспетчерское управление.

ЕЭС России охватывает практически всю обжитую территорию страны и является крупнейшим в мире централизованно управляемым энергообъединением. В настоящее время ЕЭС России включает в себя 77 энергосистем, работающих в составе шести работающих параллельно ОЭС - ОЭС Центра, Юга, Северо-Запада, Средней Волги, Урала и Сибири и ОЭС Востока, работающей изолированно от ЕЭС России. Кроме того, ЕЭС России осуществляет параллельную работу с ОЭС Украины, ОЭС Казахстана, ОЭС Белоруссии, энергосистемами Эстонии, Латвии, Литвы, Грузии и Азербайджана, а также с NORDEL (связь с Финляндией через вставку постоянного тока в Выборге) (Рис. 1.1.).

Энергосистемы Белоруссии, России, Эстонии Латвии и Литвы образуют так называемое «Электрическое кольцо БРЭЛЛ», работа которого координируется в рамках подписанного в 2001 году Соглашения о параллельной работе энергосистем БРЭЛЛ.

Основная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

В ней работают свыше 700 крупных электростанций, имеющих общую мощность более 250 млн. кВт (84% мощности всех электростанций страны). Управление ЕЭС осуществляется из единого центра.

Единая энергетическая система имеет ряд очевидных экономических преимуществ. Мощные ЛЭП (линии электропередачи) существенно повышают надежность снабжения народного хозяйства электроэнергией. Они выравнивают годовые и суточные графики потребления электроэнергии, улучшают экономические показатели электростанций и создают условия для полной электрификации районов, где ощущается недостаток электроэнергии.

Т.е. ЕЭС позволяет:

Обеспечить снижение необходимой суммарной установленной мощности электростанций за счет совмещения максимумов нагрузки энергосистем, имеющих разницу поясного времени и отличия в графиках нагрузки;

Сократить требуемую резервную мощность на электростанциях;

Осуществить наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры;

Удешевить энергетическое строительство и улучшить экологическую ситуацию.

1.2 Развитие ЕЭС России и его современная структура

Го июля 2001-го года Постановлением Правительства РФ № 526 «О реформировании электроэнергетики Российской Федерации» ЕЭС России признана «общенациональным достоянием и гарантией энергетической безопасности» страны.

По плану реформы, проводимой с 2003 г., электростанции были разделены на три группы. В первую группу входят государственные генерирующие компании, объединяющие все атомные (концерн «Росэнергоатом») и гидростанции (ОАО «Гидро ОГК», с 2008 г. - ОАО «РусГидро»). На долю этих компаний приходится около четверти электроэнергии, поступающей на оптовый рынок.

Вторая группа - территориальные генерирующие компании (ТГК), главный продукт электростанций которых - тепловая, а не электрическая энергия. Эти электростанции сгруппированы по территориальному принципу.

Третья часть - генерирующие компании оптового рынка (ОГК) - включают крупные электростанции страны. Эта группа компаний формирует цены на оптовом рынке, где электроэнергию приобретают крупнейшие потребители. Чтобы избежать монополии на производство электроэнергии в отдельных регионах в состав каждой ОГК включены электростанции, расположенные в разных районах страны.

В 2008 г. закончено формирование целевой структуры всех ОГК и ТГК, в основном завершена организация компании «РусГидро».

Магистральные электрические сети (напряжением 220 кВ и выше) перешли под контроль Федеральной сетевой компании (ФСК), распределительные сети интегрированы в межрегиональные сетевые компании (МРСК). Функции и активы региональных диспетчерских управлений переданы общероссийскому системному оператору.

РАО «ЕЭС России» в целом выполнило поставленные задачи по реформированию отрасли и в 2008 г. прекратило свое существование.

АО-энерго сохраняются только в изолированно работающих энергосистемах страны (Сахалинэнерго, Камчатскэнерго и др.).

На конец 2010 г. в составе ЕЭС России параллельно работали шесть объединенных энергосистем - Северо-Запада, Центра, Средней Волги, Урала, Юга, Сибири. ОЭС Востока, включающая 4 региональные энергосистемы Дальнего Востока, работает раздельно от ОЭС Сибири. Точки раздела между этими объединенными энергосистемами находятся на транзитной высоковольтной линии (ВЛ) 220 кВ «Читаэнерго» - «Амурэнерго» и устанавливаются оперативно в зависимости от складывающегося баланса обоих энергообъединений.

Опыт более чем 40 летней работы ЕЭС России показал, что создание целостной единой системы, несмотря на относительную слабость сетевых связей Европейская часть России - Сибирь и Сибирь - Дальний Восток, дает ощутимую экономию затрат на производство электроэнергии за счет эффективного управления перетоками электрической энергии и способствует надежному энергоснабжению страны.

ОЭС Северо-Запада.

В составе ОЭС Северо-Запада работают энергообъекты, расположенные на территориях г. Санкт-Петербурга, Мурманской, Калининградской, Ленинградской, Новгородской, Псковской, Архангельской областей, республик Карелия и Коми. ОЭС обеспечивает синхронную параллельную работу ЕЭС России с энергосистемами стран Балтии и Белоруссии, а также несинхронную параллельную работу (через конвертор) с энергосистемой Финляндии и экспорт электроэнергии в страны, входящие в объединение энергосистем Скандинавии НОРДЕЛ (Дания, Финляндия, Норвегия, Швеция).

Отличительными особенностями ОЭС Северо-Запада являются:

· протяженные (до 1000 км) одноцепные транзитные ВЛ 220 кВ (Вологда - Архангельск - Воркута) и 330 кВ (Санкт-Петербург - Карелия - Мурманск);

· большая доля электростанций, работающих в базовом режиме (крупные АЭС и ТЭС), обеспечивающие около 90% суммарной выработки электроэнергии в ОЭС. В связи с чем регулирование неравномерности суточного и сезонного суммарных графиков электропотребления ОЭС происходит, в основном, за счет межсистемных перетоков мощности. Это приводит к реверсивной загрузке внутри и межсистемных транзитных линий 220-750 кВ практически до максимально допустимых величин.

ОЭС Центра.

ОЭС Центра является наиболее крупной (по сосредоточенному в ней производственному потенциалу) объединенной энергосистемой в ЕЭС России. В составе ОЭС Центра работают энергообъекты, расположенные на территориях г. Москвы, Ярославской, Тверской, Смоленской, Московской, Ивановской, Владимирской, Вологодской, Костромской, Нижегородской, Рязанской, Тамбовской, Брянской, Калужской, Тульской, Орловской, Курской, Белгородской, Воронежской и Липецкой областей, а генерирующие мощности электростанций объединения составляют около 25% от суммарной генерирующей мощности ЕЭС России.

Отличительными особенностями ОЭС Центра являются:

· ее расположение на стыке нескольких ОЭС (Северо-Запада, Средней Волги, Урала и Юга), а также энергосистем Украины и Белоруссии;

· самая высокая в ЕЭС удельная доля атомных электростанций в структуре генерирующей мощности;

· большое количество крупных узлов электропотребления, связанных с предприятиями черной металлургии, а также крупных промышленных городских центров (Вологодско-Череповецкий, Белгородский, Липецкий, Нижегородский);

· наличие крупнейшей в России Московской энергосистемы, которая предъявляет повышенные требования к обеспечению надежности режимов энергоснабжения и отличается в настоящее время высокими темпами и большой величиной прироста электропотребления;

ОЭС Средней Волги.

В составе ОЭС Средней Волги работают энергообъекты, расположенные на территориях Пензенской, Самарской, Саратовской, Ульяновской областей, Мордовской, Татарской, Чувашской и Марийской республик.

ОЭС располагается в Центральной части ЕЭС России и граничит с ОЭС Центра и Урала, а также с энергосистемой Казахстана. ОЭС обеспечивает транзитную передачу мощности - до 4300 МВт с востока на запад и до 3800 МВт с запада на восток, что позволяет наиболее эффективно использовать в течение суток генерирующие мощности как самого объединения, так и ОЭС Центра, Урала и Сибири.

Отличительной особенностью ОЭС Средней Волги является значительная доля гидрогенерирующих мощностей (ГЭС Волжско-Камского каскада), что позволяет оперативно изменять генерацию в широком диапазоне до 4880 МВт, обеспечивая как регулирование частоты в ЕЭС России, так и поддержание величины транзитных перетоков с ОЭС Центра, Урала и Сибири в заданных пределах.

ОЭС Урала.

ОЭС Урала образована из энергообъектов, расположенных на территориях Свердловской, Челябинской, Пермской, Оренбургской, Тюменской, Кировской, Курганской областей, Удмуртской и Башкирской республик. Их объединяет более 106 тысяч километров линий электропередачи (четверть суммарной протяженности ВЛ ЕЭС России) напряжением 500-110 киловольт, расположенных на территории площадью почти 2,4 миллиона квадратных километров. В составе ОЭС Урала работают 106 электростанций, суммарная установленная мощность которых составляет свыше 42 тыс. МВт или 21,4% от суммарной установленной мощности электростанций ЕЭС России. ОЭС расположена в центре страны, на стыке ОЭС Сибири, Центра, Средней Волги и Казахстана.

Отличительными особенностями ОЭС Урала являются:

· сложная многокольцевая сеть 500 кВ, в которой ежедневно от двух до восьми ВЛ 500 кВ отключены для планового или аварийного ремонта, а также резерв по напряжению;

· значительные суточные колебания величины электропотребления с вечерним спадом (скорость до 1200 МВт ∙час) и утренним ростом (скорость до 1400 МВт∙ час), вызванные высокой долей промышленности в потреблении Урала;

· большая доля высокоманевренного блочного оборудования ТЭС (58% от установленной мощности), которое позволяет ежедневно изменять суммарную загрузку электростанций ОЭС Урала в диапазоне от 5000 до 7000 МВт и отключать в резерв на выходные дни и в праздники от двух до десяти энергоблоков суммарной мощностью от 500 до 2000 МВт. Это позволяет регулировать межсистемные перетоки с ОЭС Центра, Средней Волги, Сибири и Казахстана и обеспечивать надежное электроснабжение потребителей Урала.

В составе ОЭС Юга работают энергообъекты, расположенные на территории Краснодарского, Ставропольского краёв, Волгоградской, Астраханской, Ростовской областей, Чеченской, Ингушской, Дагестанской, Кабардино-Балкарской, Калмыкской, Северо-Осетинской и Карачаево-Черкесской республик. ОЭС обеспечивает параллельную работу ЕЭС России с энергосистемами Украины, Азербайджана и Грузии.

Отличительными особенностями ОЭС Юга являются:

· исторически сложившаяся схема электрической сети на базе ВЛ 330-500 кВ, протянувшихся с северо-запада на юго-восток вдоль Кавказского хребта по районам с интенсивным гололедообразованием, особенно в предгорьях;

· неравномерность стока рек Северного Кавказа (Дон, Кубань, Терек, Сулак), которая оказывает существенное влияние на баланс электроэнергии, приводя к дефициту электроэнергии зимой, с соответствующей загрузкой электрической сети в направлении запад-восток, и профициту в летний период, с загрузкой в обратном направлении;

· самая большая (по сравнению с другими ОЭС) доля коммунально-бытовой нагрузки в структуре электропотребления, что приводит к резким скачкам потребления электроэнергии при температурных изменениях.

ОЭС Сибири.

ОЭС Сибири - наиболее территориально протяженное объединение в ЕЭС России, охватывающее территорию от Омской области в Западной Сибири до Читинской области в Восточной Сибири. В составе ОЭС работают энергообъекты, расположенные на территориях Алтайского, Красноярского краёв, Омской, Томской, Новосибирской, Кемеровской, Иркутской, Читинской областей, республик Хакасия, Бурятия и Тыва. «Таймырэнерго» работает изолированно. В ОЭС объединены около 87 тыс. километров ВЛ напряжением 1150 -110 киловольт и более 46 ГВт генерирующих мощностей электростанций, более 50% из которых составляют мощности ГЭС.

ОЭС Сибири было образовано с нуля за короткий исторический срок. Одновременно с сооружением мощных и эффективных каскадов ГЭС и строительством крупных ГРЭС на базе дешёвых бурых углей открытой добычи создавались крупные территориально-промышленные комплексы (Братский, Усть-Илимский, Саянский, Канско-Ачинский топливно-энергетический комплекс - КАТЭК). Следующим шагом стало сооружение высоковольтных линий электропередач, создание районных энергетических систем за счет объединения электросетями мощных электростанций, а затем образование ОЭС Сибири.

Отличительными особенностями ОЭС Сибири являются:

· уникальная структура генерирующей мощности, более 50% которой составляют гидроэлектростанции с водохранилищами многолетнего регулирования и запасами порядка 30 млрд кВт∙ч на период длительного маловодья. При этом ГЭС Сибири производят почти 10% объема выработки электроэнергии всеми электростанциями ЕЭС России;

· значительные естественные колебания годового стока рек Ангаро-Енисейского бассейна, энергетический потенциал которого составляет от 70 до 120 млрд кВт∙ч, при плохой прогнозируемости водности рек даже в краткосрочной перспективе;

· использование пиковой мощности ГЭС Сибири в регулировании нагрузки Европейской части ОЭС и регулирование годовой неравномерности энергоотдачи ГЭС по водотоку резервами ТЭС Урала и Центра.

С этой целью было осуществлено строительство ВЛ 500 кВ и 1150 кВ по транзиту Сибирь - Казахстан - Урал - Средняя Волга - Центр с планируемым реверсом мощности до 3-6 млн. кВт.

ОЭС Дальнего Востока.

На территории Дальнего Востока и Крайнего Севера работают энергообъекты, расположенные в Приморском, Хабаровском краях, Амурской, Камчатской, Магаданской, Сахалинской областях и Республике Саха (Якутия). Из них энергообъекты, расположенные на территориях Амурской области, Хабаровского и Приморского краев и Южно-Якутского энергорайона Республики Саха (Якутия) объединены межсистемными линиями электропередачи 500 и 220 кВ, имеют единый режим работы и образуют ОЭС Востока.

· преобладание в структуре генерирующих мощностей тепловых электростанций (более 70% от установленной мощности), имеющих ограниченный диапазон регулирования;

· ограниченные возможности использования регулировочных диапазонов Зейской и Бурейской ГЭС из-за необходимости обеспечения судоходства на реках Зея и Амур;

· размещение основных генерирующих источников в северо-западной части, а основных районов потребления - на юго-востоке ОЭС;

· одна из самых высоких в ЕЭС России (почти 21%) доля коммунально-бытовой нагрузки в электропотреблении;

· протяженные линии электропередачи.

качество энергосистема зарубежный диспетчерский

1.3 Связи ЕЭС России с энергосистемами зарубежных стран

На конец 2010 года параллельно с ЕЭС России работали энергосистемы Белоруссии, Эстонии, Латвии, Литвы, Грузии, Азербайджана, Казахстана, Украины, Молдавии и Монголии. Через энергосистему Казахстана параллельно с ЕЭС России работали энергосистемы Центральной Азии - Узбекистана, Киргизии и Таджикистана.

Параллельная работа ЕЭС России с энергосистемами соседних стран дает реальные преимущества, связанные с совмещением графиков электрической нагрузки и резервов мощности, и позволяет осуществлять взаимный обмен (экспорт/импорт) электроэнергии между этими энергосистемами. Кроме того, совместно с ЕЭС России через устройства Выборгского преобразовательного комплекса работала энергосистема Финляндии, входящая в объединение энергосистем Скандинавии. От электрических сетей России осуществлялось также электроснабжение выделенных районов Норвегии и Китая.

Рис. 1. Внутренние и внешние связи ЕЭС России

2. ОПЕРАТИВНО-ДИСПЕТЧЕРСКОЕ УПРАВЛЕНИЕ В ЕЭС РОССИИ.

1 ОАО «СО-ЦДУ ЕЭС»

Управление таким большим синхронно работающим объединением, каким является ЕЭС России, представляет собой сложнейшую инженерную задачу, не имеющую аналогов в мире.

Для ее решения в России создана многоуровневая иерархическая система оперативно-диспетчерского управления, включающая: Системный оператор - Центральное диспетчерское управление (далее также СО-ЦДУ ЕЭС); семь территориальных объединенных диспетчерских управлений (ОДУ или СО-ОДУ)- в каждой из семи ОЭС; региональные диспетчерские управления (РДУ или СО-РДУ); пункты управления электростанций и предприятий электрических сетей; оперативно-выездные бригады.

ОАО «СО-ЦДУ ЕЭС» осуществляет централизованное оперативно-технологическое управление Единой энергетической системой России.

Основными задачами ОАО «СО-ЦДУ ЕЭС» являются:

· обеспечение системной надежности в условиях развивающихся конкурентных отношений в электроэнергетике;

· обеспечение соблюдения установленных технологических параметров функционирования электроэнергетики и стандартных показателей качества электрической энергии;

· создание условий для эффективного функционирования рынка электроэнергии (мощности) и обеспечения исполнения обязательств субъектов электроэнергетики по договорам, заключаемым на оптовом рынке электрической энергии и розничных рынках. ОАО «СО-ЦДУ ЕЭС» выполняет в рамках ЕЭС России следующие функции:

· прогнозирование и обеспечение сбалансированности производства и потребления электроэнергии;

· планирование и принятие мер по обеспечению необходимого резерва мощности на загрузку и разгрузку электростанций;

· оперативное управление текущими режимами, осуществляемое диспетчерским персоналом;

· использование автоматического управления нормальными и аварийными режимами.

2.2 Стратегические задачи по оптимизации режимов работы ЕЭС России

Кроме того, органами диспетчерского управления с участием других инфраструктурных организаций электроэнергетики решаются стратегические задачи по оптимизации режимов работы ЕЭС России в среднесрочном и долгосрочном периодах, включая:

· прогнозирование потребления мощности и электроэнергии и разработка балансов мощности и электроэнергии;

· определение пропускных способностей сечений электрической сети ЕЭС;

· оптимизация использования энергоресурсов и проведения капитальных ремонтов генерирующего оборудования;

· обеспечение выполнения расчетов электрических режимов, статической и динамической устойчивости;

· централизованное управление технологическими режимами работы устройств и систем релейной защиты, автоматики и противоаварийной автоматики межсистемных и основных системообразующих линий электропередачи, шин, трансформаторов и автотрансформаторов связи основных классов напряжений (выполнение расчетов токов короткого замыкания, выбор параметров настройки устройств релейной защиты и автоматики (РЗА) и противоаварийной автоматики (ПА));

· распределение функций оперативно-диспетчерского управления оборудованием и линиями электропередачи, подготовку оперативно-технической документации;

· разработка схем и режимов для характерных периодов года (осенне-зимний максимум, период паводка и др.), а также в связи с вводом новых объектов и расширением состава параллельно работающих энергосистем;

· согласование графиков ремонтов основного оборудования электростанций, линий электропередачи, оборудования подстанций, устройств РЗ и ПА;

· решение всего комплекса вопросов обеспечения надежности электроснабжения и качества электроэнергии, внедрения и совершенствования средств диспетчерского управления и систем автоматического управления режимами.

2.3 Автоматизированная система диспетчерского управления

Для решения задач планирования, оперативного и автоматического управления используется развитая компьютерная автоматизированная система диспетчерского управления (АСДУ), представляющая иерархическую сеть диспетчерских центров обработки данных СО-ЦДУ, СО ОДУ и СО-РДУ, связанных между собой и с энергообъектами (электростанциями, подстанциями) каналами телемеханики и связи. Каждый диспетчерский центр оснащен мощной компьютерной системой, обеспечивающей в реальном времени автоматический сбор, обработку и отображение оперативной информации о параметрах режима работы ЕЭС России, состояния электрической сети и основного энергооборудования, позволяющей диспетчерскому персоналу соответствующего уровня управления осуществлять оперативный контроль и управление работой ЕЭС России, а также решение задач планирования и анализа режимов, мониторинга участия электростанций в первичном и вторичном регулировании частоты электрического тока.

Важнейшим средством поддержания надежности и живучести ЕЭС России является многоуровневая система противоаварийной автоматики, не имеющая аналогов в зарубежных электрообъединениях. Эта система предотвращает и локализует развитие системных аварий путем:

· автоматического предотвращения нарушения устойчивости;

· автоматической ликвидации асинхронного режима;

· автоматического ограничения снижения и повышения частоты;

· автоматического ограничения снижения и повышения напряжения;

· автоматической разгрузки оборудования.

Устройства противоаварийной и режимной автоматики размещаются на энергообъектах (локальные комплексы) и на диспетчерских центрах ОАО «СО-ЦДУ ЕЭС» (централизованные системы противоаварийной автоматики, обеспечивающие координацию работы локальных комплексов).

3. ОСНОВНЫЕ ПРОБЛЕМЫ И ДИСПРОПОРЦИИ В РАЗВИТИИ ЕЭС РОССИИ.

3.1 Основные проблемы ЕЭС России

Наличие в Европейской части ЕЭС большой доли ТЭЦ и АЭС с низкими маневренными возможностями, сосредоточение маневренных ТЭС и гидростанций в ОЭС Урала, Средней Волги и Сибири обуславливает значительный диапазон изменения перетоков мощности на связях Центр - Средняя Волга - Урал при покрытии графиков потребления. Повышение пропускной способности транзита Центр - Средняя Волга - Урал за счет строительство ряда линий системообразующей сети 500 кВ позволит сократить ограничения по передаче мощности по основным контролируемым сечениям, повысить надежность параллельной работы Европейской и Уральской частей ЕЭС России.

Актуальна задача повышения надежности работы Саратовско-Балаковского энергоузла и усиление схемы выдачи мощности Балаковской АЭС за счет усиления транзита ОЭС Средней Волги - ОЭС Юга.

Строительство новых линий транзита Урал - Средняя Волга позволит повысить надежность энергоснабжения Южного Урала и выдачи мощности Балаковской АЭС. Необходимо также усиление транзитов в Северо-Западном регионе ЕЭС России и его связи с ОЭС Центра на напряжении 750 кВ. Сетевые решения увеличат пропускную способность сечения Северо-Запад - Центр и ликвидируют запертую мощность в Кольской энергосистеме.

Заключение

Единая энергетическая система России является на данный момент крупнейшим централизованно управляемым объединением, не имеющим аналогов в мире. Электрические сети охватывают огромную территорию страны - шесть часовых поясов с востока на запад. В составе ЕЭС России 440 электростанций суммарной установленной мощностью около 200 ГВт; более 120 подстанций напряжением 330 кВ и выше; ЛЭП общей протяженностью 3018 тыс. км; единая система диспетчерского регулирования, объединяющая практически все энергетические объекты в работу с единой частотой электрического тока 50 Гц; более 300 организаций, обслуживающих основной технологический процесс и развитие ЕЭС России.

Действующая система диспетчерского и автоматического управления ЕЭС России и ОЭС показала высокую эффективность, что подтверждается следующими фактами. В течение последних 50 лет в России не было глобальных системных аварий, подобных тем, которые произошли в США и Канаде (14 случаев за последние 33 года), а также Японии, Франции, Швеции и других странах Европы.

Согласно разрабатываемой энергетической стратегии производство электроэнергии в 2010 году должно составить 1020 млрд кВт∙ч, а установленная мощность - 229 млн кВт.

Для осуществления этих задач потребуется ввод новых генерирующих мощностей и техническое перевооружение электрических станций и сетей, что предусматривает максимальный демонтаж выработавшего свой ресурс оборудования и замену его новым.

Список используемой литературы

1. ГОСТ 21027-75 «Системы энергетические. Термины и определения».

Кучеров Ю.Н. «Состояние российской энергетики и перспективы ее развития на период до 2010 г.

Дьяков, А. Ф. «Единая энергетическая система России

в период рыночных преобразований».

Л.Д. Рожкова, Л.К. Карнеева, Т.В. Чиркова «Электрооборудование электрических станций и подстанций».

Единая энергетическая система России

Энергетические ресурсы земли

И их использование

Уровень материальной, и, в конечном счете, духовной культуры людей находится в прямой зависимости от количества энергии, имеющейся в их распоряжении. Самоограничение в использовании энергии тепла и электроэнергии входит в противоречие с естественным желанием человека жить комфортно в современном цивилизованном обществе. При этом население земли и потребности людей непрерывно растут. Структура мирового энергохозяйства к сегодняшнему дню такова, что практически 80% произведенной энергии на земле производится путем сжигания органического топлива. При этом попытки решить энергетические проблемы сегодняшнего дня увеличением числа тепловых электростанций обречены на провал в силу целого ряда причин, обусловленных как ограниченными ресурсами традиционных органических топлив и, как следствие, неизбежным ростом цен на них, так и возросшими требованиями к защите окружающей среды. Отсюда – стремление ведущих промышленных стран, обеспечивающих оптимизацию внутреннего энергетического баланса, выработать национальные энергетические программы. При этом со стороны наиболее развитых в экономическом плане стран неизбежно стремление контролировать мировые энергоресурсы – их добычу и распределение.

Сама по себе энергия представляет собой не что иное, как способность совершать ту или иную работу. Огромное количество энергии содержится в ископаемом топливе, деревьях, растениях, воздухе, воде, солнце, в самих людях и животных, однако процесс преобразования ее в полезную работу может быть как технически, так и экономически малоэффективным. При этом среди источников энергии различают возобновляемые и невозобновляемые природой, традиционные и нетрадиционные.

К возобновляемым источникам энергии условно относят источники энергии, которые в обозримом будущем, исчисляемым тысячелетиями, неиссякнут. Такими источниками энергии являются: энергия рек, морей и океанов, солнечная, ветровая, геотермальная энергия, биоэнергия и др.

Невозобновляемые источники энергии – источники энергии, которые после преобразования их в иной вид энергии теряют возможность последующего использования. К таким источникам энергии относят ископаемые органические виды топлив (торф, уголь, горючие сланцы, нефть и продукты ее переработки, природный и искусственный газ, ядерное топливо и др.).

Традиционные источники энергии – источники энергии, которые используются для выработки электрической и тепловой энергии в традиционных энергетических установках – котельных установках, тепловых, атомных и гидравлических электростанциях. К таким источникам энергии относят торф, уголь, газ, мазут, ядерное топливо, а также возобновляемый природой источник энергии – гидравлическая энергия рек.

Нетрадиционные источники энергии – источники энергии, которые не являются общепринятыми для выработки электрической и тепловой энергии в традиционных энергетических установках. К таким источникам энергии относят энергию ветра, солнца, земли, морей и океанов и др. Нетрадиционной энергетикой являются также водородная энергетика, биоэнергетика, энергетика вторичных ресурсов.

Потребление энергии – важный показатель жизненного уровня. К настоящему времени в России и европейских странах производство электроэнергии на душу населения достигло в среднем 6–7 тысяч кВт∙ч, а в США и Канаде – вдвое больше. При этом наблюдается ежегодный рост удельного энергопотребления в развитых странах.

Учитывая результаты прогнозов по запасам нефти и природного газа, которых хватит на 50–70 лет, и запасов угля, которых хватит на 600–1000 лет, можно считать, что на данном этапе развития науки и техники тепловые электростанции будут еще долгое время преобладать над остальными нетрадиционными источниками энергии. Из мировых запасов нефти, объем которых оценивают в 2 триллиона баррелей, около 900 миллиардов уже использовано. Поскольку уже началось существенное удорожание нефти и природного газа, следует ожидать, что тепловые электростанции, работающие на мазуте и газе, к концу XXI века будут вытеснены станциями на угле. Пока же наблюдается сокращение добычи угля, что связано не столько с относительно низкой его калорийностью, сколько с проблемами добычи и транспортировки, а также ухудшения экологии за счет вредных выбросов в атмосферу при сжигании этого топлива в котельных установках.

На этом фоне экологически чистыми и практически неисчерпаемыми в обозримом будущем являются речные гидроресурсы, однако в Западной Европе они уже в значительной мере задействованы и возможности строительства новых гидроэлектростанций весьма проблематичны, поскольку создание гидростатического напора на равнинных реках приведет к неизбежному затоплению значительных территорий. Кроме того сооружение ГЭС сопряжено со значительными капитальными затратами и, соответственно, длительными сроками окупаемости. Вместе с тем неиспользованных запасов гидроэнергии в ряде регионов планеты, в частности в Сибири, вполне достаточно, чтобы гидроресурсы рассматривать как традиционную альтернативу использованию органических невозобновляемых ресурсов.

Что касается запасов ядерного топлива, то по прогнозам специалистов его запасов хватит не менее чем на 1000 лет при условии интенсивного развития реакторов–размножителей. Запасы урана и тория, если их сравнивать с запасами угля, не столь уж и велики, однако на единицу веса они содержат в себе энергии в миллионы раз больше, чем уголь. Из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 т каменного угля. Некоторые ученые и экологи в конце 1990–х годов говорили о скором запрещении государствами Западной Европы атомных электростанций, но, исходя из современных анализов сырьевого рынка и потребностей общества в электроэнергии, эти утверждения выглядят неуместными.

Учитывая естественное истощение ископаемых топлив, все больше говорят о необходимости в XXI веке начала нового этапа развития земной энергетики, характеризуемого «щадящим» использованием невозобновляемых энергоресурсов. При этом необходимо учитывать, что нефть и газ нужны не только энергетике, но и химии, и транспорту, и сельскому хозяйству. Несомненно, что в будущем параллельно с линией интенсивного развития энергетики получит развитие и линия экстенсивного развития, характеризующаяся рассредоточением по центрам потребления экологически чистых источников энергии не слишком большой мощности, но с высоким КПД, удобных и надежных в эксплуатации. Яркий пример тому – интенсивное развитие нетрадиционной энергетики, в частности электрохимической и водородной, солнечной и ветровой энергетики, геотермальной и малой гидроэнергетики и др. Более подробно вопросы нетрадиционной энергетики рассмотрены в главе 5.



1.2. Топливно–энергетический комплекс России

Энергетика является важнейшей сферой экономики, охватывающей добычу энергоресурсов, производство, преобразование, транспортировку и использование различных видов энергии потребителями. В современном представлении перечисленная совокупность процессов может эффективно функционировать лишь при ее организации по принципу «большой системы», в качестве которой выступает топливно–энергетический комплекс (ТЭК) России. По территориальному признаку ТЭК делится на три иерархических уровня: государственный, региональный и районный.

Система ТЭК включает в себя следующие основные подсистемы:

1) топливоснабжающие системы (добычи, транспортировки и переработки нефти, газа, угля и иных невозобновляемых природных энергоресурсов);

2) системы электро– и теплоснабжения, базирующиеся на использовании невозобновляемых источников энергии на тепловых электростанциях (ТЭС);

3) система ядерной энергетики, базирующаяся на добыче, переработке ядерного топлива и преобразовании энергии деления ядер в тепловую энергию в ядерных реакторах на атомных электростанциях (АЭС).

Система гидроэнергетики формально в состав ТЭК не входит, так как базируется на использовании возобновляемых природой гидроресурсов.

К основным топливоснабжающим системам ТЭК относят углеснабжающую, нефтеснабжающую и газоснабжающую системы.

Углеснабжающая система России занимает одно из первых мест в мире по добыче угля. Наиболее крупные угольные бассейны – Канско–Ачинский и Кузнецкий – расположены в азиатском регионе страны на значительном удалении от промышленных зон европейской части, что затрудняет рациональное использование этих источников энергоресурсов тепловыми ЭС, размещенными на западе России.

Нефтеснабжающая система объединяет нефтепромыслы европейской и азиатской части России, магистральные трубопроводы и насосные станции для перекачки нефти к местам ее переработки, а также включает нефтеперерабатывающие заводы и хранилища нефтепродуктов. Мазут как продукт переработки нефти применяется в основном как резервное топливо газомазутных электростанций.

Газоснабжающая система России занимает второе место в мире после США по объему добычи. В настоящее время эксплуатируется более 100 месторождений природного газа, крупнейшие из которых расположены в Западной Сибири. Система включает в себя около 100 магистральных газопроводов, по которым газ транспортируется к газоперерабатывающим предприятиям и тепловым электростанциям России, а также экспортируется в ряд европейских стран.

Система ядерной энергетики состоит из предприятий по добыче и переработке ядерного топлива, установок по его использованию в народном хозяйстве (в частности, ядерных энергетических реакторов), заводов по восстановлению отработанного горючего и уничтожению отходов.

Электро– и теплоснабжающая система включает в себя все энергетические установки и системы электро– и теплоснабжения, обеспечивающие потребителей электрической и тепловой энергией.

Как «большая система» ТЭК характеризуется следующими особенностями:

1) непрерывностью, а подчас и неразрывностью во времени процессов производства, преобразования и потребления некоторых видов энергии;

2) широкой взаимозаменяемостью исходной и промежуточной продукции подсистем, причем продукция одних подсистем является в ряде случаев исходным сырьем для других.

Единая энергетическая система России

Развитие принципа централизации энергоснабжения и, прежде всего, электроснабжения, логически при­вело сначала к образованию нескольких десятков районных энергетических систем (РЭС) – Мосэнерго, Челябэнерго, Пермэнерго и др., затем к объединению их в региональные энергосистемы, а именно – к созданию 7 объединенных энергосистем (ОЭС) Центра, Урала, Сибири, Северо–Запада, Средней Волги, Северного Кавказа, Востока. В дальнейшем процесс централизации энергоснабжения органически привел к созданию единой энергосистемы (ЕЭС) России . Лишь одна ОЭС Востока в настоящее время формально не входит в состав ЕЭС РФ. В составе ОЭС Востока параллельно работают три РЭС: Амурская, Хабаровская и Дальневосточная. Еще семь РЭС (Камчатская, Сахалинская, Магаданская, Якутская, Мангышлакская, Калининградская и Норильская) работают изолированно. На сегодняшний день в составе ЕЭС России 64 РЭС. Всего же на территории России насчитывается 74 РЭС.

К слову сказать, до 1991 года успешно функционировала ЕЭС СССР, которая охватывала практически всю обжитую территорию 15–ти республик. С помощью ЕЭС была решена важнейшая политико–экономическая задача – страна была объединена в единое экономическое пространство. Однако распад СССР привел к разделу электроэнергетической собственности между новыми государствами и к коренному изменению структуры управления энергетикой. В условиях кризиса энергетики России в декабре 1992 года ряд наиболее мощных и рентабельных предприятий энергетики были включены в состав РАО «ЕЭС России». Это 20 тепловых электростанций с установленной мощностью более 1000 МВт каждая с суммарной мощностью 42 ГВт, 15 гидроэлектростанций с установленной мощностью более 300 МВт с суммарной установленной мощностью 26 ГВт, 134 трансформаторных подстанции напряжением 220 кВ и выше с суммарной установленной мощностью трансформаторного оборудования 114,8 ГВА, системообразующие линии электропередачи напряжением 330 кВ и выше общей протяженностью около 57 тыс. км. и др.

В рамках реформы электроэнергетики России и в целях выполнения решений Правления РАО «ЕЭС России» 17 июня 2002 г. было зарегистрировано ОАО «Системный оператор – Центральное диспетчерское управление ЕЭС» («СО ЦДУ»). Системный оператор стал первым институтом отечественного рынка электроэнергии. В середине 2008 г. РАО «ЕЭС России» было, по сути, расформировано как выполнившее свою задачу первоначальной реорганизации энергетики в условиях становления рыночной экономики. Создание в начале 2000–х годов оптовых рынков купли/продажи энергии и мощности о (ФОРЭМ, НОРЭМ и др.), образование различных схем торговли энергией, в частности ЭНЕРГОПУЛ, явилось закономерным процессом в условиях формирующихся рыночных отношений.

Вместо бывшей ЕЭС СССР ныне функционируют следующие энергетические системы:

· ЕЭС России;

· ОЭС Белоруссии, Казахстана, Украины;

· ЭС Молдавии;

· ОЭС Прибалтики, объединяющая РЭС Латвии, Литвы и Эстонии;

· ОЭС Закавказья, объединяющая РЭС Азербайджана, Армении, Грузии.

Кроме того, на территории бывшего СССР работает ОЭС Средней Азии, объединяющая РЭС Киргизии, Таджикистана, Туркменистана, Узбекистана.

В целом ЕЭС России представляет собой развивающийся комплекс электростанций и сетей, объединенных общим технологическим циклом производства, передачи и распределения электрической энергии с единым оперативно–диспетчерским управлением.

С точки зрения состава электростанций, объединенных в ЕЭС, российская энергетика сегодня – это порядка 600 тепловых, 100 гидравлических и 9 атомных электростанций. Функционируют несколько автономных электростанций малой энергетики, содержащих газотурбинные, дизельные электростанции. Работают также электростанции, использующие в качестве первичного источника энергии гидравлическую энергию малых рек, солнечную, ветровую, гидротермальную, приливную энергию, но доля производимой ими энергии очень мала по сравнению с тепловыми, атомными и гидравлическими станциями (не превышает 1% от суммарно вырабатываемой энергии в РФ).

Основную часть мощности энергосистемы России (70–80%) составляют тепловые электростанции (ТЭС). Мощности гидравлических (ГЭС) и атомных (АЭС) электростанций по разным оценкам составляют от 10 до 15 % от мощности всей ЕЭС. В Сибири, богатой водными ресурсами, мощность ГЭС достигает 50% от установленной мощности электростанций региона.

Характерной особенностью ЕЭС России является высокая концентрация мощностей на электростанциях. На ТЭС эксплуатируются энергоблоки единичной мощностью до 1200 МВт, на АЭС работают реакторы максимальной электрической мощностью 1000 МВт. Установленная мощность отдельных электростанций достигает 4,0 ГВт на АЭС, 4,8 ГВт на ТЭС и 6,4 ГВт на ГЭС. Суммарная установленная мощность всех электростанций ЕЭС России составляет порядка 200 ГВт. При этом суммарная годовая выработка электроэнергии в последние годы составляет 850–950 млрд. кВт∙ч. Количество выработанной электроэнергии на душу населения в 2000 году составило около 6800 кВт ∙ ч, что соответствует электропотреблению на душу населения в ведущих странах Западной Европы, но почти вдвое ниже, чем в США и Канаде . В этом же году в России потребителям было отпущено около 600 млн. Гкал теплоты.

Объединение ЭС на параллельную работу осуществляется по межсистемным электрическим сетям высокого напряжения. В сетях высокого напряжения ЕЭС России исторически сложились две системы номинальных напряжений: 150–330–750 кВ в западных и частично в центральных районах, 110–220–500–1150 кВ в центральных и восточных районах. Эксплуатацией линий электропередач напряжением 330, 500, 750 и 1150 кВ, образующих основную (системообразующую) сеть ЕЭС России, занимаются территориальные подразделения межсистемных электрических сетей (МЭС). Сети напряжением от 220 до 1150 кВ объединяют на параллельную работу. Заметим, что межсистемная связь 500–1150 кВ между Уралом и Сибирью проходит по территории Казахстана. Через вставку постоянного тока ЕЭС России связана с энергетической системой Финляндии, входящей в объединение энергетических систем северных стран Европы (NORDEL).

Оперативно диспетчерское управление ЕЭС России осуществляется с помощью иерархической четырехуровневой автоматизированной системы диспетчерского управления (АСДУ). Она включает в себя: центральное диспетчерское управление (ЦДУ) ЕЭС, расположенное в г. Москве; 7 территориальных объединенных диспетчерских управлений (ОДУ); 74 центральных диспетчерских службы (ЦДС) при районных АО–энерго; около 280 диспетчерских пунктов электросетевых предприятий и районов и более 500 пунктов управления электростанциями (нижний уровень управления).

Следует отметить, что оперативно–диспетчерскоеуправление ЕЭС России осложнено тем, что имеет место жесткое взаимодействие в едином производственном процессе большого количества энергетических объектов, размещенных на очень большой территории при непрерывном процессе производства, распределения и потребления электроэнергии. Кроме того, в такой большой стране имеет место существенная неравномерность суточных, сезонных, территориальных графиков электрических и тепловых нагрузок. Более того, ряд ОЭС и РЭС России связаны с основной частью ЕЭС через электрические сети, не входящих в состав ЕЭС России, в частности, через сети Казахстана.



План:

    Введение
  • 1 Преимущества объединения электрических станций и сетей в ЕЭС России
  • 2 История создания
  • 3 Административно-хозяйственное управление ЕЭС
  • 4 Особенности ЕЭС
    • 4.1 Структура генерирующих мощностей
  • 5 Технические проблемы функционирования ЕЭС
  • 6 Перспективы развития ЕЭС
  • Примечания

Введение

Линии электропередачи близ города Шарья

Единая энергетическая система России (ЕЭС России ) - совокупность производственных и иных имущественных объектов электроэнергетики, связанных единым процессом производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии) и передачи электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике.

ГОСТ 21027-75 дает следующее определение Единой энергосистемы :

Единая энергосистема - совокупность объединённых энергосистем (ОЭС), соединённых межсистемными связями, охватывающая значительную часть территории страны при общем режиме работы и имеющая диспетчерское управление

ЕЭС России охватывает практически всю обжитую территорию страны и является крупнейшим в мире централизованно управляемым энергообъединением. В настоящее время ЕЭС России включает в себя 77 энергосистем, работающих в составе шести работающих параллельно ОЭС - ОЭС Центра, Юга, Северо-Запада, Средней Волги, Урала и Сибири и ОЭС Востока, работающей изолированно от ЕЭС России. Кроме того, ЕЭС России осуществляет параллельную работу с ОЭС Украины, ОЭС Казахстана, ОЭС Белоруссии, энергосистемами Эстонии, Латвии, Литвы, Грузии и Азербайджана, а также с NORDEL (связь с Финляндией через вставку постоянного тока в Выборге). Энергосистемы Белоруссии, России, Эстонии Латвии и Литвы образуют так называемое «Электрическое кольцо БРЭЛЛ», работа которого координируется в рамках подписанного в 2001 году Соглашения о параллельной работе энергосистем БРЭЛЛ.

Системный оператор выделяет три крупных независимых энергообъединения в Европе - Северную (NORDEL), Западную (UCTE) и Восточную (ЕЭС/ОЭС) синхронные зоны (NORDEL и UCTE в июле 2009 года вошли в состав нового европейского объединения - ENTSO-E). Под ЕЭС/ОЭС понимается ЕЭС России в совокупности с энергосистемами стран СНГ, Балтии и Монголии.


1. Преимущества объединения электрических станций и сетей в ЕЭС России

Параллельная работа электростанций в масштабе Единой энергосистемы позволяет реализовать следующие преимущества :

  • снижение суммарного максимума нагрузки ЕЭС России на 5 ГВт;
  • сокращение потребности в установленной мощности электростанций на 10-12 ГВт;
  • оптимизация распределения нагрузки между электростанциями в целях сокращения расхода топлива;
  • применение высокоэффективного крупноблочного генерирующего оборудования;
  • поддержание высокого уровня надёжности и живучести энергетических объединений.

Совместная работа электростанций в Единой энергосистеме обеспечивает возможность установки на электростанциях агрегатов наибольшей единичной мощности, которая может быть изготовлена промышленностью, и укрупнения электростанций. Увеличение единичной мощности агрегатов и установленной мощности электростанций имеет значительный экономический эффект.


2. История создания

Принципы централизации выработки электроэнергии и концентрации генерирующих мощностей на крупных районных электростанциях были заложены ещё при реализации плана ГОЭЛРО. Развитие электроэнергетики СССР в 1930-е годы характеризовалось началом формирования энергосистем. В 1926 году в Московской энергосистеме была создана первая в стране центральная диспетчерская служба (ЦДС, в настоящее время ЦДС носят названия Региональных диспетчерских управлений и имеют статус филиалов ОАО «СО ЕЭС»). К 1935 году в стране работало шесть энергосистем, в том числе Московская, Ленинградская, Донецкая и Днепровская. Первые энергосистемы были созданы на основе ЛЭП напряжения 110 кВ, за исключением Днепровской, в которой использовались линии напряжения 154 кВ, принятого для выдачи мощности Днепровской ГЭС.

В 1942 году для координации работы трех районных энергетических систем: Свердловской, Пермской и Челябинской было создано первое Объединённое диспетчерское управление - ОДУ Урала. В 1945 году было создано ОДУ Центра.

В начале 1950-х годов было начато строительство каскада гидроэлектростанций на Волге. В 1956 г. объединение энергосистем Центра и Средней Волги линией электропередачи 400 кВ «Куйбышев - Москва», обеспечивавшей выдачу мощности Куйбышеской ГЭС, обозначило начало формирования Единой энергосистемы СССР. Последовавшее строительство ЛЭП 500 кВ от каскада Волжских ГЭС обеспечило возможность параллельной работы энергосистем Центра, Средней и Нижней Волги и Урала и завершило первый этап создания Единой энергетической системы.

В июле 1962 г. было подписано соглашение о создании в Праге Центрального диспетчерского управления (ЦДУ) энергосистем Болгарии, Венгрии, ГДР, Польши, СССР, Румынии и Чехословакии. Это соглашение привело к созданию крупнейшей на планете энергосистемы «Мир» (установленная мощность электростанций более 400 ГВт).

В 1967 г. на базе ОДУ Центра было создано Центральное диспетчерское управление (ЦДУ) ЕЭС СССР, принявшее на себя также функции диспетчерского управления параллельной работой энергосистем ОЭС Центра.

В 1970 г. к ЕЭС была присоединена ОЭС Закавказья, а в 1972 г. - ОЭС Казахстана и отдельные районы Западной Сибири.

В 1978 г. ОЭС Сибири была присоединена к ЕЭС СССР.

К 1990 г. в состав ЕЭС СССР входили 9 из 11 энергообъединений страны, охватывая 2/3 территории СССР, на которых проживало более 90 % населения. В ноябре 1993 г. из-за большого дефицита мощности на Украине был осуществлён вынужденный переход на раздельную работу ЕЭС России и ОЭС Украины, что привело к раздельной работе ЕЭС России с остальными энергосистемами, входящими в состав энергосистемы «Мир». В дальнейшем параллельная работа энергосистем, входящих в состав «Мира», с центральным диспетчерским управлением в Праге не возобновлялась. После распада СССР электрические связи между некоторыми энергообъединениями в составе ЕЭС России стали проходить по территории независимых государств и электроснабжение части регионов оказалось зависимым от этих государств (связи 500-1150 кВ между ОЭС Урала и Сибири, проходящие по территории Казахстана, связи ОЭС Юга и Центра, частично проходящие по территории Украины, связи ОЭС Северо-Запада с Калининградской энергосистемой, проходящие по территории стран Балтии).

В 1995 г. ОДУ Центра выведено из состава ЦДУ ЕЭС России в качестве Дирекции оперативно-диспетчерского управления объединенной энергетической системы Центра «Центрэнерго» (филиал РАО «ЕЭС России»).


3. Административно-хозяйственное управление ЕЭС

До 1 июля 2008 года высшим уровнем в административно-хозяйственной структуре управления электроэнергетической отраслью являлось ОАО «РАО ЕЭС России».

Диспетчерско-технологическое управление работой ЕЭС России осуществляет ОАО «СО ЕЭС».

Постановлением Правительства РФ от 11.07.2001 № 526 «О реформировании электроэнергетики Российской Федерации» Единая энергетическая система России признана «общенациональным достоянием и гарантией энергетической безопасности» государства. Основной её частью «является единая национальная энергетическая сеть, включающая в себя систему магистральных линий электропередачи, объединяющих большинство регионов страны и представляющая собой один из элементов гарантии целостности государства». Для ее «сохранения и укрепления, обеспечения единства технологического управления и реализации государственной политики в электроэнергетике» было предусмотрено создание ОАО «ФСК ЕЭС». В постановлении Правительства Российской Федерации от 26.01.2006 № 41 были утверждены критерии отнесения к ЕНЭС магистральных линий электропередачи и объектов электросетевого хозяйства. Следует отметить, что в других нормативных документах аббревиатура ЕНЭС расшифровывается как «Единая национальная электрическая сеть», что является более правильным с технической точки зрения.

Большинство тепловых электростанций России находятся в собственности семи ОГК (оптовые генерирующие компании) и четырнадцати ТГК (территориальные генерирующие компании). Большая часть производственных мощностей гидроэнергетики сосредоточена в руках компании «РусГидро».

Эксплуатирующей организацией АЭС России является ОАО «Концерн Росэнергоатом».

Реформирование электроэнергетики подразумевало создание в России оптового и розничных рынков электрической энергии. Деятельность по обеспечению функционирования коммерческой инфраструктуры оптового рынка, эффективной взаимосвязи оптового и розничных рынков, формированию благоприятных условий для привлечения инвестиций в электроэнергетику, организации на основе саморегулирования эффективной системы оптовой и розничной торговли электрической энергией и мощностью осуществляет некоммерческое партнёрство «Совет рынка». Деятельность по организации торговли на оптовом рынке, связанная с заключением и организацией исполнения сделок по обращению электрической энергии, мощности и иных объектов торговли, обращение которых допускается на оптовом рынке, осуществляет коммерческий оператор оптового рынка - ОАО «Администратор торговой системы оптового рынка электроэнергии» (ОАО «АТС»).


4. Особенности ЕЭС

ЕЭС России располагается на территории, охватывающей 8 часовых поясов. Необходимостью электроснабжения столь протяжённой территории обусловлено широкое применение дальних электропередач высокого и сверхвысокого напряжения. Системообразующая электрическая сеть ЕЭС (ЕНЭС) состоит из линий электропередачи напряжения 220, 330, 500 и 750 кВ. В электрических сетях большинства энергосистем России используется шкала напряжений 110-220 - 500-1150 кВ. В ОЭС Северо-Запада и частично в ОЭС Центра используется шкала напряжений 110-330 - 750 кВ. Наличие сетей напряжения 330 и 750 кВ в ОЭС Центра связано с тем, что сети указанных классов напряжения используются для выдачи мощности Калининской, Смоленской и Курской АЭС, расположенных на границе использования двух шкал напряжений. В ОЭС Северного Кавказа определённое распространение имеют сети напряжения 330 кВ.


4.1. Структура генерирующих мощностей

ОЭС, входящие в состав ЕЭС России, имеют различную структуру генерирующих мощностей, значительная часть энергосистем не сбалансирована по мощности и электроэнергии. Основу российской электроэнергетики составляют около 600 электростанций суммарной мощностью 210 ГВт, работающих в составе ЕЭС России. Две трети генерирующих мощностей приходится на тепловые электростанции. Около 55 % мощностей ТЭС составляют теплоэлектроцентрали (ТЭЦ), а 45 % - конденсационные электростанции (КЭС). Мощность гидравлических (ГЭС), в том числе гидроаккумулирующих (ГАЭС) электростанций составляет 21 % установленной мощности электростанций России. Мощность атомных электростанций составляет 11 % установленной мощности электростанций страны. Для ЕЭС России характерна высокая степень концентрации мощностей на электростанциях. На тепловых электростанциях эксплуатируются серийные энергоблоки единичной мощностью 500 и 800 МВт и один блок мощностью 1200 МВт на Костромской ГРЭС. Единичная мощность энергоблоков действующих АЭС достигает 1000 МВт.


5. Технические проблемы функционирования ЕЭС

Одной из серьёзных проблем функционирования ЕЭС является слабость межсистемных, а иногда и системообразующих связей в энергосистеме, что приводит к «запиранию» мощностей электрических станций . Слабость межсистемных связей в ЕЭС обусловлена ее территориальной распределённостью. Ограничения в использовании связей между различными ОЭС и большинства наиболее важных связей внутри ОЭС определяются в основном условиями статической устойчивости; для ЛЭП, обеспечивающих выдачу мощности крупных электростанций, и ряда транзитных связей определяющими могут быть условия динамической устойчивости.

Проводившиеся исследования выявили, что стабильность частоты в ЕЭС России ниже, чем в UCTE. Особенно большие отклонения частоты происходят весной и во второй половине ночи, что свидетельствует об отсутствии гибких средств регулирования частоты .


6. Перспективы развития ЕЭС

Развитие ЕЭС в обозримой перспективе описывается в Генеральной схеме размещения объектов электроэнергетики до 2020 года.

В настоящее время Системный оператор завершил работу над технико-экономическим обоснованием (ТЭО) объединения ЕЭС/ОЭС с UCTE. Такое объединение означало бы создание самого большого в мире энергетического объединения, расположенного в 12 часовых поясах, суммарной установленной мощностью более 860 ГВт . 2 апреля 2009 года в Москве состоялась Международная отчётная конференция «Перспективы объединения энергосистем Восток-Запад (Результаты ТЭО синхронного объединения ЕЭС/ОЭС с UCTE)» . ТЭО показало, что «синхронное объединение энергосистем UCTE и ЕЭС/ОЭС возможно при условии проведения ряда технических, эксплуатационных и организационных мероприятий и создания необходимых правовых рамок, определённых исследованием. Поскольку выполнение этих условий, вероятно, потребует длительного времени, синхронное объединение должно рассматриваться как долгосрочная перспектива. Для построения совместной, крупнейшей в мире рыночной платформы для торговли электроэнергией между синхронными зонами UCTE и ЕЭС/ОЭС также может быть рассмотрено создание несинхронных связей, что, однако, требует проведения отдельных исследований заинтересованными сторонами» .


Примечания

  1. Федеральный закон Российской Федерации от 26 марта 2003 г. N 35-ФЗ «Об электроэнергетике» - www.rg.ru/oficial/doc/federal_zak/35-03.shtm
  2. ГОСТ 21027-75 «Системы энергетические. Термины и определения»
  3. Менеджмент и маркетинг в электроэнергетике: учебное пособие для студентов ВУЗов /А. Ф. Дьяков, В. В. Жуков, Б. К. Максимов, В. В. Молодюк; под ред. А. Ф. Дьякова. - 3-е изд. - М.: Издательский дом МЭИ, 2007
  4. Автоматизация диспетчерского управления в электроэнергетике/В. А. Баринов, А. З. Гамм, Ю. Н. Кучеров, В. Г. Орнов, Ю. Н. Руденко, В. А. Семёнов, В. А. Тимофеев, Ю. А. Тихонов, Е. В. Цветков; под общей ред. Ю. Н. Руденко и В. А. Семёнова. - М.: Издательство МЭИ, 2000
  5. Основы современной энергетики: учебник для вузов: в 2 т. / под общей редакцией чл.-корр. РАН Е.В. Аметистова. - 4-е изд., перераб. и доп. - М. : Издательский дом МЭИ, 2008. Том 2. Современная электроэнергетика / под ред. профессоров А.П. Бурмана и В.А. Строева. - 632 с., ил.
  6. Срок регистрации домена закончился - www.worldenergy.ru/index.php?id=20_37_1901
  7. Перспективы объединения энергосистем Восток-Запад - psi.so-ups.ru/index.htm
  8. http://www.so-cdu.ru/cache/081208_UCTE-IPSUPS_SoIaC_published_RU.pdf - www.so-cdu.ru/cache/081208_UCTE-IPSUPS_SoIaC_published_RU.pdf

Состав и основные характеристики Единой энергетической системы России

Единая энергетическая система (ЕЭС) – комплекс электрических станций, сетей и иных объектов электросетевого хозяйства, обеспечивающих устойчивое снабжение электрической энергией потребителей, функционирование оптового рынка, а также параллельную работу российской электроэнергетической системы и электроэнергетических систем иностранных государств.

На конец 2010 года общая установленная мощность электростанций ЕЭС России составила 214 867 МВт. Для сравнения – установленная мощность Ленинградской АЭС составляет 4 000 МВт.

Годовой максимум 2010 года потребления ЕЭС России зафиксирован 26 января в 18:00 и составил 149 157 МВт, то есть около 70 % суммарной установленной мощности. Отличие данной цифры от 100 % демонстрирует наличие нагрузочного, аварийного и ремонтного резервов, а также ограничение передачи мощности по линиям электропередачи с малой пропускной способностью.

В состав ЕЭС России входят 6 объединенных энергетических систем (ОЭС). Седьмая ОЭС (ОЭС Востока) работает изолированно от ЕЭС. Энергосистемы некоторых субъектов Дальневосточного федерального округа (Камчатский край, Сахалинская область, Магаданская область, Чукотский АО, северная часть республики Саха) работают изолированно друг от друга и от ЕЭС.

Ниже перечислены все 7 ОЭС с указанием входящих в каждую из них энергосистем:

1. ОЭС Центра, включает в себя следующие энергосистемы:

Белгородскую, Брянскую, Владимирскую, Вологодскую, Воронежскую, Ивановскую, Калужскую, Костромскую, Курскую, Липецкую, Московскую, Орловскую, Рязанскую, Смоленскую, Тамбовскую, Тверскую, Тульскую, Ярославскую.

2. ОЭС Северо-Запада, включает в себя следующие энергосистемы:

Архангельскую, Калининградскую, Карельскую, Кольскую, Коми, Ленинградскую, Новгородскую, Псковскую.

3. ОЭС Юга, включает в себя следующие энергосистемы:

Астраханскую, Волгоградскую, Дагестанскую, Ингушскую, Кабардино-Балкарскую, Калмыцкую, Карачаево-Черкесскую, Кубанскую, Ростовскую, Северо-Осетинскую, Ставропольскую, Чеченскую.

4. ОЭС Средней Волги, включает в себя следующие энергосистемы:

Марийскую, Мордовскую, Нижегородскую, Пензенскую, Самарскую, Саратовскую, Татарскую, Ульяновскую, Чувашскую.

5. ОЭС Урала, включает в себя следующие энергосистемы:

Башкирскую, Кировскую, Курганскую, Оренбургскую, Пермскую, Свердловскую, Тюменскую, Удмуртскую, Челябинскую.

6. ОЭС Сибири, включает в себя следующие энергосистемы:

Алтайскую, Бурятскую, Иркутскую, Красноярскую, Кузбасскую, Новосибирскую, Омскую, Томскую, Хакасскую, Читинскую.

7. ОЭС Востока, включает в себя следующие энергосистемы:

Амурскую, Дальневосточную, Хабаровскую, Якутскую.

Параллельно с ЕЭС России работают энергосистемы иностранных государств: Белоруссии, Эстонии, Латвии, Литвы, Грузии, Азербайджана, Казахстана, Украины, Молдавии и Монголии. Через энергосистему Казахстана в течение 2010 года параллельно с ЕЭС России работали энергосистемы Центральной Азии – Узбекистана, Киргизии .

Совместно с ЕЭС через устройства Выборгского преобразовательного комплекса (через вставку постоянного тока) работает энергосистема Финляндии, входящая в энергообъединение энергосистем Скандинавии НОРДЕЛ. Параллельно с энергосистемой Норвегии работают отдельные генераторы ГЭС Кольской энергосистемы. От электрических сетей России также осуществляется электроснабжение некоторых районов Китая .

На рис. 2.1 указаны географическое расположение объединённых энергосистем России, а также площадь занимаемых ими территорий (здесь и на следующих рисунках для наглядности высота прямоугольников пропорциональна соответствующему численному значению). Наибольшую площадь занимает ОЭС Востока, наименьшую – ОЭС Средней Волги и Юга.

На рис. 2.2 отображена численность населения, проживающего на территориях ОЭС. Максимальная численность относится к ОЭС Центра, минимальная – к ОЭС Востока. Отсюда можно сделать вывод, что по плотности населения лидирующие позиции занимают ОЭС Юга, Центра, Средней Волги. Наименьшей плотностью населения обладает ОЭС Востока.

Представление об установленной мощности электростанций различных ОЭС можно получить, анализируя рис. 2.3. Видно, что наибольшая доля электроэнергии может вырабатываться в ОЭС Центра, Сибири и Урала. На фоне этих ОЭС незначительной является доля установленной мощности. ОЭС Юга и Востока.

Представляет интерес анализ структуры установленной мощности различных ОЭС по видам электростанций: АЭС, ТЭС, ГЭС. В среднем по стране главную роль в выработке электроэнергии играют тепловые электрические станции, установленная мощность которых составляет в суммарной мощности всех станций 65%, на втором месте гидроэлектростанции – 20%. На атомных электростанциях производится около 15% электроэнергии. В связи с различными географическими и социальными особенностями регионов, расположенных на территории различных ОЭС, сложилась ситуация, отображённая на рис. 2.4.

Особо следует отметить ОЭС Сибири, где благодаря наличию мощных рек примерно половина электроэнергии вырабатывается на ГЭС, а действующие атомные станции в настоящее время отсутствуют. В ОЭС Сибири построены самые мощные гидростанции России – Саяно-Шушенская ГЭС (до аварии 17.08.2009 являлась не только самой мощной отечественной ГЭС, но и вообще самой мощной электростанцией в России), Красноярская ГЭС, Братская ГЭС, Усть-Илимская ГЭС.

Управление режимом ОЭС Сибири осложняют естественные колебания годового стока рек Ангаро-Енисейского бассейна, а также тот факт, что водность рек – стихийное природное явление, которое сложно прогнозировать. Нормальный режим работы ОЭС Сибири достигается за счет перетоков мощности по транзиту Сибирь – Урал – Центр. Это обеспечивает компенсацию годовой неравномерности энергоотдачи ГЭС за счет резервов единой энергосистемы, а также делает возможным использование регулировочного диапазона гидроэлектростанций ОЭС Сибири для регулирования нагрузки в ЕЭС России .

Также можно отметить ОЭС Урала, где весьма высокую долю выработки электроэнергии составляют тепловые станции. Именно здесь расположены самые мощные в России тепловые электростанции – Сургутская ГРЭС-2 (самая мощная ТЭС в России), Рефтинская ГРЭС, Сургутская ГРЭС-1, Ириклинская ГРЭС, Пермская ГРЭС. Очень важным является то, что структура установленной мощности ОЭС Урала отличается большой долей высокоманевренного блочного оборудования. Это позволяет ежедневно изменять суммарную загрузку электростанций ОЭС Урала в широком диапазоне, а также отключать в резерв на субботу, воскресенье и праздники. Эти уникальные возможности по регулированию частоты используются не только в интересах ЕЭС России, но и позволяют обойтись без каких-либо системных нарушений при вечернем спаде и утреннем росте электропотребления, вызванных одной из самых высоких в России долей промышленности в потреблении Урала.

Напомним, что установленная мощность – это сумма номинальных мощностей генераторов, которая теоретически может быть использована в данной энергосистеме. В реальности же отдельные блоки электростанций несут неполную нагрузку, в часы минимума нагрузки могут сбрасывать мощность до нуля, останавливаются на плановый или аварийный ремонт. Реальная выработка электроэнергии за некоторый период (обычно рассматривается 1 год или 8760 часов) зависит не только от установленной мощности, но и от времени её использования, то есть от степени загруженности электростанций в течение года.

На рис. 2.5 показана структура выработки электроэнергии в ОЭС России по видам электростанций. Здесь стоит отметить ОЭС Центра, где имеется высокая удельная доля АЭС в структуре генерации. В ОЭС центра находятся Калининская, Смоленская, Курская и Нововоронежская АЭС.

Также обращает на себя внимание ОЭС Северо-Запада, имеющая большую долю электростанций, работающих в базовом режиме – АЭС и ТЭЦ. Атомные электростанции представлены в ОЭС Северо-Запада Ленинградской и Кольской АЭС. Говоря о ТЭЦ, следует иметь в виду, что неблагоприятные климатические условия региона обуславливают необходимость большую часть года работать по теплофикационному графику. В связи с этим регулирование неравномерности суточного и сезонного суммарных графиков электропотребления ОЭС происходит, в основном, за счет межсистемных перетоков мощности.

Проиллюстрируем преимущества работы электростанций в составе единой энергосистемы численными показателями функционирования ЕЭС России в 2010 году. При этом остановимся на важнейшем показателе энергосистемы – частоте электрического тока.

Согласно требованиям ГОСТ 13109-97 нормально допустимое отклонение частоты составляет не более ± 0,2 Гц, что соответствует диапазону (49,8...50,2) Гц. Единая энергосистема России в 2010 году 100 % календарного времени работала с допустимыми отклонениями частоты от номинального значения. Зафиксированы наибольшие отклонения в диапазоне 49,924...50,095 Гц. При этом максимальное время отклонения частоты за уровень 50,00±0,05 Гц составило всего 13 мин. в году. В 2010 году суммарная продолжительность работы с частотой более 50,05 Гц составила 54 минуты, а с частотой менее 49,95 Гц – 01 час 01 минуту.

На рис. 2.6 изображена структура потребления электроэнергии по отраслям народного хозяйства. Обратим внимание на ОЭС Урала и Сибири, где лидирующую долю потребления имеет промышленность. В процентном соотношении ОЭС Востока держит первенство по потреблению электроэнергии населением.

Перечислим основные преимущества работы электростанций в составе ЕЭС:

обеспечение надежного электроснабжения потребителей за счет замкнутости питающих сетей и высокой степени резервирования;

поддержание высокого уровня надёжности и живучести энергетических объединений;

снижение суммарного максимума нагрузки ЕЭС за счет широтного эффекта;

сокращение потребности в установленной мощности электростанций;

оптимизация распределения нагрузки между электростанциями в целях сокращения расхода топлива;

применение высокоэффективного крупноблочного генерирующего оборудования;

улучшение качества электроэнергии, т. к. колебания нагрузки воспринимаются большим числом агрегатов.

Вместе с тем для ЕЭС присущи следующие проблемы функционирования:

слабость межсистемных связей и «запирание» мощностей электрических станций,

сложность технологического управления,

сложность организации финансовых отношений,

каскадное развитие аварий.

Структура энергосистемы Российской Федерации.

Наименование параметра Значение
Тема статьи: Структура энергосистемы Российской Федерации.
Рубрика (тематическая категория) Финансы

Энергосистема – это группы электростанций разных типов, объединенные высоковольтными линиями электропередачи (ЛЭП) и управляемые из одного центра. Энергосистемы в электроэнергетике России объединяют производство, передачу и распределение электроэнергии между потребителями. В энергосистеме для каждой электростанции есть возможность выбрать наиболее экономичный режим работы. Причем если в составе энергосистемы высока доля ГЭС, то её маневренные возможности повышаются, а себестоимость электроэнергии относительно ниже; наоборот, в системе, объединяющей только ТЭС, они наиболее ограничены, а себестоимость электроэнергии выше.

Для более экономного использования потенциала электростанций России создана Единая энергетическая система (ЕЭС), в которой входят более 700 крупных электростанций, на которых сосредоточено 84% мощности всех электростанций страны. Создание ЕЭС имеет экономические преимущества. Основная цель создания и развития Единои̌ энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

Объединение энергосистем в ЕЭС позволяет˸ обеспечить снижение необходимой суммарной установленной мощности электростанций за счёт совмещения максимумов нагрузки энергосистем, которые имеют разницу поясного времени и отличия в графиках нагрузки; сократить требуемую резервную мощность на электростанциях; осуществить наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры; удешевить энергетическое строительство; улучшить экологическую ситуацию.

Более 90 % производственного потенциала электроэнергетики России объединено в Единую энергетическую систему (ЕЭС), которая охватывает всю населенную территорию страны от западных границ до Дальнего Востока и является одной из крупнейших в мире централизованно управляемых энергосистем. Для изолированных энергосистем характерны ограничения системных связей с другими территориями, из которых возможны межрегиональные перетоки электроэнергии.

На 12 января 2013 года общая установленная мощность энергосистемы Российской Федерации составила 218 145,8 МВт. Установленная мощность парка действующих электростанций по типам генерации имеет следующую структуру˸ тепловые электростанции 68,4%, гидравлические – 20,4%, атомные – около 11 %.

В соответствии со схемой и программой развития единои̌ энергетической системы России на 2011 – 2017 годы вводы нового генерирующего оборудования электростанций ЕЭС России в 2011 – 2017 годах предусматриваются в объёме 50,05 млн КВт. В том числе на АЭС – 9,88 млн КВт, на ГЭС – 4,09 млн КВт, на ГАЭС – 0,98 млн КВт, на ТЭС – 34,44 млн КВт и на ВИЭ – 0,66 млн КВт.

Наиболее значительный объём вводов генерирующих объектов и оборудования до 2017 года планируется в ОЭС Центра (9,48млн КВт) и в ОЭС Урала (13,54млн КВт).

Основу системообразующих сетей Единои̌ энергетической системы России составляют линии электропередачи класса напряжения 220 кВ и выше (ЛЭП), и распределительные сети класса напряжения 110 кВ и ниже.

Структура энергосистемы Российской Федерации. - понятие и виды. Классификация и особенности категории "Структура энергосистемы Российской Федерации." 2015, 2017-2018.